Home
Class 12
MATHS
int(e^(x)(1+x))/(cos^(2)(e^(x)x))dx equa...

`int(e^(x)(1+x))/(cos^(2)(e^(x)x))dx` equal to

A

`-cot(ex^(x))+C`

B

`tan(xe^(x))+C`

C

`tan(e^(x))+C`

D

`cot(e^(x))+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{e^x (1 + x)}{\cos^2(e^x x)} \, dx, \] we can follow these steps: ### Step 1: Rewrite the Integral We can rewrite the integral as: \[ I = \int \frac{e^x + x e^x}{\cos^2(e^x x)} \, dx. \] ### Step 2: Substitution Let’s make a substitution. Let \[ t = e^x x. \] Now, we need to find \( dt \). We differentiate \( t \) with respect to \( x \): Using the product rule, \[ dt = (e^x x)' \, dx = (e^x + x e^x) \, dx = e^x (1 + x) \, dx. \] Thus, we have: \[ dx = \frac{dt}{e^x (1 + x)}. \] ### Step 3: Substitute in the Integral Now we substitute \( t \) and \( dx \) into the integral: \[ I = \int \frac{e^x (1 + x)}{\cos^2(t)} \cdot \frac{dt}{e^x (1 + x)}. \] The \( e^x (1 + x) \) terms cancel out: \[ I = \int \frac{1}{\cos^2(t)} \, dt. \] ### Step 4: Simplify the Integral The integral of \( \frac{1}{\cos^2(t)} \) is: \[ I = \int \sec^2(t) \, dt. \] ### Step 5: Integrate The integral of \( \sec^2(t) \) is: \[ I = \tan(t) + C. \] ### Step 6: Substitute Back Now we substitute back \( t = e^x x \): \[ I = \tan(e^x x) + C. \] ### Final Result Thus, the integral \[ \int \frac{e^x (1 + x)}{\cos^2(e^x x)} \, dx = \tan(e^x x) + C. \] ---

To solve the integral \[ I = \int \frac{e^x (1 + x)}{\cos^2(e^x x)} \, dx, \] we can follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PRACTICE EXERCISE (Exercise 2) (MISCELLANEOUS PROBLEMS)|78 Videos
  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos
  • LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos

Similar Questions

Explore conceptually related problems

int(e^(x)(1+x))/(cos^(2)(xe^(x)))dx=

int(e^(x)(1+x))/(cos^(2)(e^(x)*x))dx equals (A)-cot(ex^(x))+C(B)tan(xe^(x))+C(C)tan(e^(x))+C(D)cot(e^(x))+C

What is int (e^(x) (1 + x))/(cos^(2) (xe^(x))) dx equal to ? where c is a constant of integration

int((x+1)e^(x))/(cos^(2)(xe^(x)))dx=?

Evaluate: (i) int((x+1)e^(x))/(cos^(2)(xe^(x)))dx (ii) int x^(2)e^(x)-3cos(e^(x)-3)dx

int(e^(x)-sin x)/(cos x+e^(x))dx

int (e^(x)+e^(-x))^(2)*(e^(x)-e^(-x))dx is equal to

int(e^(x))/((e^(x)-1)(e^(x)+2))dx=