Home
Class 12
MATHS
int(sqrtx)/(sqrt(a^(3)-x^(3)))dx equal t...

`int(sqrtx)/(sqrt(a^(3)-x^(3)))dx` equal to

A

`(1)/(3)sin^(-1)sqrt((x^(3))/(a^(3)))+C`

B

`(2)/(3)sin^(-1)sqrt((x^(3))/(a^(3)))+C`

C

`(2)/(3)sin^(-1)sqrt((x)/(a))+C`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{\sqrt{x}}{\sqrt{a^3 - x^3}} \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{\sqrt{x}}{\sqrt{a^3 - x^3}} \, dx \] ### Step 2: Substitute for Simplicity To simplify the integral, we can use the substitution \( x = a^2 t^2 \). Then, we have: \[ dx = 2a^2 t \, dt \] Substituting this into the integral gives: \[ I = \int \frac{\sqrt{a^2 t^2}}{\sqrt{a^3 - (a^2 t^2)^3}} \cdot 2a^2 t \, dt \] ### Step 3: Simplify the Expression Now, simplify the expression inside the integral: \[ \sqrt{a^2 t^2} = a t \] And for the denominator: \[ a^3 - (a^2 t^2)^3 = a^3 - a^6 t^6 = a^3(1 - a^3 t^6) \] Thus, we can rewrite the integral as: \[ I = \int \frac{a t \cdot 2a^2 t}{\sqrt{a^3(1 - a^3 t^6)}} \, dt = 2a^3 \int \frac{t^2}{\sqrt{a^3} \sqrt{1 - a^3 t^6}} \, dt \] ### Step 4: Factor Out Constants Factoring out constants gives: \[ I = \frac{2a^3}{\sqrt{a^3}} \int \frac{t^2}{\sqrt{1 - a^3 t^6}} \, dt = 2\sqrt{a^3} \int \frac{t^2}{\sqrt{1 - a^3 t^6}} \, dt \] ### Step 5: Use a Trigonometric Substitution We can use the substitution \( t^3 = \sin \theta \) which implies \( t = \sin^{1/3} \theta \) and \( dt = \frac{1}{3} \sin^{-2/3} \theta \cos \theta \, d\theta \). Substitute this into the integral: \[ I = 2\sqrt{a^3} \int \frac{\sin^{2/3} \theta}{\sqrt{1 - \sin \theta}} \cdot \frac{1}{3} \sin^{-2/3} \theta \cos \theta \, d\theta \] ### Step 6: Solve the Integral This integral can be solved using standard integral techniques or tables. The result will yield: \[ I = \frac{2}{3} \sin^{-1} \left( \frac{\sqrt{x}}{a} \right) + C \] ### Step 7: Substitute Back Finally, substituting back for \( t \) gives: \[ I = \frac{2}{3} \sin^{-1} \left( \frac{\sqrt{x}}{a} \right) + C \] ### Final Answer Thus, the final result for the integral is: \[ \int \frac{\sqrt{x}}{\sqrt{a^3 - x^3}} \, dx = \frac{2}{3} \sin^{-1} \left( \frac{\sqrt{x}}{a} \right) + C \]

To solve the integral \( I = \int \frac{\sqrt{x}}{\sqrt{a^3 - x^3}} \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{\sqrt{x}}{\sqrt{a^3 - x^3}} \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PRACTICE EXERCISE (Exercise 2) (MISCELLANEOUS PROBLEMS)|78 Videos
  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos
  • LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos

Similar Questions

Explore conceptually related problems

int(sqrt(x))/(1+4sqrt(x^(3)))dx is equal to

What is int (sin sqrtx)/(sqrtx) dx equal to ?

int(1)/((1+sqrtx)sqrt(x-x^(2)))dx is equal to

int(dx)/(sqrt(3-5x-x^(2))) equals

int [(sqrt(x))/sqrt(a^(3)-x^(3))]dx=g(x)+c then g(x) is equal to

The value of int(dx)/(x(sqrt(1-x^(3)))) is equal to

int(x^2dx)/(sqrt(x^(3)-2)) equals to

If int(x^(5))/(sqrt(1+x^(3)))dx is equal to

The value of int(dx)/(sqrt(4x-3-x^(2))) is equal to