Home
Class 12
MATHS
int(dx)/(sqrt(1-e^(2x))) is equal to...

`int(dx)/(sqrt(1-e^(2x)))` is equal to

A

`log|e^(-x)+sqrt(e^(-2x)-1)|+C`

B

`log|e^(x)+sqrt(e^(2x)-1)|+C`

C

`-log|e^(-x)+sqrt(2x^(-2x)-1)|+C`

D

`-log|e^(-2x)+sqrt(e^(-2x)-1)|+C`

Text Solution

Verified by Experts

The correct Answer is:
C

Let `l=int(dx)/(sqrt(1-e^(2x)))=int(e^(-x))/(sqrt(e^(-2x)-1))dx`
Put `e^(-x)=t rArr e^(-x)dx=-dt`
`therefore" "l=-int(dt)/(sqrt(t^(2)-1))=-log|t+sqrt(t^(2)-1)|+C`
`=-log|e^(-x)+sqrt(e^(-2)-1)|+C`
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PRACTICE EXERCISE (Exercise 2) (MISCELLANEOUS PROBLEMS)|78 Videos
  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos
  • LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos

Similar Questions

Explore conceptually related problems

int(dx)/(sqrt(1-e^(x)))

int(dx)/(sqrt(x-x^(2))) is equal to

int(dx)/(sqrt(e^(2x)-1))=

int(dx)/(sqrt((1-x)(x-2))) is equal to

int(dx)/(sqrt(e^(x)-1))

Column I, a) int(e^(2x)-1)/(e^(2x)+1)dx is equal to b) int1/((e^x+e^(-x))^2)dx is equal to c) int(e^(-x))/(1+e^x)dx is equal to d) int1/(sqrt(1-e^(2x)))dx is equal to COLUMN II p) x-log[1+sqrt(1-e^(2x)]+c q) log(e^x+1)-x-e^(-x)+c r) log(e^(2x)+1)-x+c s) -1/(2(e^(2x)+1))+c

int(dx)/(sqrt(2e^(x)-1))=

int(1)/(sqrt(9x-4x^(2)))dx is equal to

int_(-1)^((1)/(2))(e^(x)(2-x^(2))dx)/((1-x)sqrt(1-x^(2))) is equal to (sqrt(e))/(2)(sqrt(3)+1) (b) (sqrt(3e))/(2)sqrt(3e)(d)sqrt((e)/(3))