Home
Class 12
MATHS
The value of the integral int(dx)/((e^(x...

The value of the integral `int(dx)/((e^(x)+e^(-x))^2)` is

A

`(1)/(2)(e^(2x)+1)+C`

B

`(1)/(2)(e^(-2x)+1)+C`

C

`-(1)/(2)(e^(2x)+1)^(-1)+C`

D

`(1)/(4)(e^(2x)-1)+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{dx}{(e^x + e^{-x})^2} \] we will follow these steps: ### Step 1: Simplify the Denominator We start by rewriting the denominator: \[ e^x + e^{-x} = \frac{e^{2x} + 1}{e^x} \] Thus, \[ (e^x + e^{-x})^2 = \left(\frac{e^{2x} + 1}{e^x}\right)^2 = \frac{(e^{2x} + 1)^2}{e^{2x}} \] Now, substituting this back into the integral gives: \[ I = \int \frac{e^{2x}}{(e^{2x} + 1)^2} \, dx \] ### Step 2: Substitution Let us make the substitution: \[ t = e^{2x} + 1 \] Then, differentiating both sides gives: \[ dt = 2e^{2x} \, dx \quad \Rightarrow \quad dx = \frac{dt}{2e^{2x}} \] From our substitution, we have: \[ e^{2x} = t - 1 \] Substituting \(dx\) into the integral: \[ I = \int \frac{(t - 1)}{t^2} \cdot \frac{dt}{2(t - 1)} = \frac{1}{2} \int \frac{dt}{t^2} \] ### Step 3: Integrate Now we can integrate: \[ I = \frac{1}{2} \left(-\frac{1}{t}\right) + C = -\frac{1}{2t} + C \] ### Step 4: Substitute Back Now we substitute back \(t = e^{2x} + 1\): \[ I = -\frac{1}{2(e^{2x} + 1)} + C \] ### Final Result Thus, the value of the integral is: \[ I = -\frac{1}{2(e^{2x} + 1)} + C \]

To solve the integral \[ I = \int \frac{dx}{(e^x + e^{-x})^2} \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PRACTICE EXERCISE (Exercise 2) (MISCELLANEOUS PROBLEMS)|78 Videos
  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos
  • LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos

Similar Questions

Explore conceptually related problems

int(dx)/(e^(x)+e^(2x))

The value of the integral int_(0)^(1) e^(x^(2))dx lies in the integral

The value of the integral int_(-a)^(a)(e^(x))/(1+e^(x))dx is

If the value of the integral int_(1)^(2)e^(x^(2))dx is alpha, then the value of int_(e)^(e^(4))sqrt(ln x)dx is:

The value of the integral int_-a^a (x e^(x^2))/(1+x^2)dx is (A) e^(a^2) (B) 0 (C) e^(-a^2) (D) a

The value of the integral int_0^(log5) (e^(x)sqrt(e^(x)-1))/(e^(x)+3)dx , is

The value of the integral int_(0)^(log5)(e^(x)sqrt(e^(x)-1))/(e^(x)+3)dx

The value of the integral int _(e ^(-1))^(e ^(2))|(ln x )/(x)|dx is:

The value of the integral int(xsin x^(2)e^(secx^(2)))/(cos^(2)x^(2))dx , is

The value of the integral int_(-1)^(1)(dx)/((1+x^(2))(1+e^(x)) is equal to