Home
Class 12
MATHS
int(1+x)/(x+e^(-x))dx is equal to...

`int(1+x)/(x+e^(-x))dx` is equal to

A

`log|(x-e^(-x))|+C`

B

`log|(x+e^(-x))|+C`

C

`log|(1+xe^(x))|+C`

D

`(1+xe^(x))^(2)+C`

Text Solution

Verified by Experts

The correct Answer is:
C

Let `l=int(1+x)/(x+e^(-x))dx=int(e^(x)(1+x))/(xe^(x)+1)dx`
Put`" "xe^(x)+1=t`
`rArr" "(xe^(x)+e^(x))dx=dt`
`rArr" "(x+1)e^(x)dx=dt`
`therefore" "l=int(dt)/(dt)=log|t|+C`
`=log|(xe^(x)+1)|+C`
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PRACTICE EXERCISE (Exercise 2) (MISCELLANEOUS PROBLEMS)|78 Videos
  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos
  • LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos

Similar Questions

Explore conceptually related problems

int e^(x)dx is equal to

(2) int(1)/(e^(x)+e^(-x))dx is equal to

int(e^x)/(e^(x)+1)dx" is equal to "

int(dx)/(e^(x)+e^(-x)) is equal to

int(dx)/(e^(x)+e^(-x)) is equal to

int(dx)/(e^(x)+e^(-x)) is equal to :

int(1)/(e^(x)+1)dx is equal to

int(1)/(e^(x)+1)dx is equal to

int(1)/(e^(x)-1)dx is equal to

int_(0)^(1) (dx)/(e^(x) +e^(-x)) dx is equal to