Home
Class 12
MATHS
int(root3(x))(root5(1+root3(x^(4))))dx ...

`int(root3(x))(root5(1+root3(x^(4))))dx` is equal to

A

`(1+x^((3)/(4)))^((6)/(5))+C`

B

`(1+x^((4)/(3)))^((6)/(5))+C`

C

`(5)/(8)(1+x^((4)/(3)))^((6)/(5))+C`

D

`(1)/(6)(1+x^((4)/(3)))^(6)+C`

Text Solution

Verified by Experts

The correct Answer is:
C

Let `l=int(root3(x))(root5(1+root3(x^(4))))dx`
Put `root3(x)^(4)=t rArr (4)/(3).root3x dx=dt`
`therefore" "l=(3)/(4)int(root5(1+t))dt=(3)/(4)[((1+t)^((1)/(5)+1))/((1)/(5)+1)]+C`
`=(5)/(8)[(1+root3(x)^(4))^(6//5)]+C`
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PRACTICE EXERCISE (Exercise 2) (MISCELLANEOUS PROBLEMS)|78 Videos
  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos
  • LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos

Similar Questions

Explore conceptually related problems

int(root(3)(x))(root(5)(1+root(3)(x^(4))))dx

int root 3 (x) root 7 (1+ root3 (x ^(4))) dx is equal to

int(1+x)/(1+root(3)(x))dx is equal to

int root(3)(x^(2))dx

int(1)/(x(1+root(3)(x))^(2))dx is equal to

int root(3)(x)dx

int(1)/(root(3)(x^(2)))dx

int(1)/(root(3)(x))