Home
Class 12
MATHS
If f'(x)=(dx)/((1+x^(2))^(3//2)) and f(0...

If `f'(x)=(dx)/((1+x^(2))^(3//2)) and f(0)=0.` then f(1) is equal to

A

`sqrt2`

B

`-(1)/(sqrt2`

C

`(1)/(sqrt2)`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
C

`f'(x)=(dx)/((1+x^(2))^(3//2))`
On integrating both sides, we get
`f(x)=int(dx)/((1+x^(2))^(3//2))+C`
Put ` x= tan theta rArr dx=sec^(2) theta d theta`
`therefore" "f(x)=int(sec^(2)theta)/(sec^(3)theta)d theta+C = int cos theta d theta +C`
`rArr" "f(x)=sin theta +C`
`rArr" "f(x)=(x)/(sqrt(1+x^(2)))+C`
`rArr" "f(0)=0+C rArr C=0`
`therefore" "f(x)=(x)/(sqrt(1+x^(2))) rArr f(1)=(1)/(sqrt2)`
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PRACTICE EXERCISE (Exercise 2) (MISCELLANEOUS PROBLEMS)|78 Videos
  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos
  • LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos

Similar Questions

Explore conceptually related problems

If f'(x)=(1)/((1+x^(2))^(3//2)) and f(0)=0, then f(1) is equal to :

Let f(x)=int(1)/((1+x^(2))^(3//2))dx and f(0)=0 then f(1)=

If f(x+1)=2x+7 then f(0) is equal to

If f(x)=int(3x^(2)+1)/((x^(2)-1)^(3))dx and f(0)=0, then the value of (2)/(f(2))| is

If f(x)=int(3x^4-1)/(x^4+x+1)^2dx and f(0)=0 , then f(-1)= …

Let f(x),=int(x^(2))/((1+x^(2))(1+sqrt(1+x^(2))))dx and f(0),=0 then f(1) is

If f(x)+int{f(x)}^(-2)dx=0 and f(1)=0 then f(x) is

A polynomial function f(x) satisfies f(x)f((1)/(x))-2f(x)+2f((1)/(x));x!=0 and f(2)=18 ,then f(3) is equal to

Let f(x) =intsqrtx/((1+x)^2)dx(xge0) . The f(3) - f(1) is equal to :