Home
Class 12
MATHS
int(f'(x))/(sqrt(f(x)))dx=…+C,f(x) ne 0...

`int(f'(x))/(sqrt(f(x)))dx=…+C,f(x) ne 0`

A

`(1)/(2)sqrt(f(x))`

B

`2sqrt(f(x))`

C

`(1)/(2)f(x)`

D

`2f(x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{f'(x)}{\sqrt{f(x)}} \, dx\), we can follow these steps: ### Step 1: Substitution Let \(t = f(x)\). Then, the derivative \(dt\) can be expressed in terms of \(f'(x)\): \[ dt = f'(x) \, dx \quad \Rightarrow \quad dx = \frac{dt}{f'(x)} \] ### Step 2: Rewrite the Integral Substituting \(t\) into the integral gives us: \[ \int \frac{f'(x)}{\sqrt{f(x)}} \, dx = \int \frac{f'(x)}{\sqrt{t}} \cdot \frac{dt}{f'(x)} = \int \frac{1}{\sqrt{t}} \, dt \] ### Step 3: Integrate Now we can integrate \(\frac{1}{\sqrt{t}}\): \[ \int \frac{1}{\sqrt{t}} \, dt = 2\sqrt{t} + C \] ### Step 4: Substitute Back Now substitute back \(t = f(x)\): \[ 2\sqrt{t} + C = 2\sqrt{f(x)} + C \] ### Final Result Thus, we have: \[ \int \frac{f'(x)}{\sqrt{f(x)}} \, dx = 2\sqrt{f(x)} + C \] ### Conclusion Comparing this with the original question, we find that the expression that comes before \(+ C\) is \(2\sqrt{f(x)}\).

To solve the integral \(\int \frac{f'(x)}{\sqrt{f(x)}} \, dx\), we can follow these steps: ### Step 1: Substitution Let \(t = f(x)\). Then, the derivative \(dt\) can be expressed in terms of \(f'(x)\): \[ dt = f'(x) \, dx \quad \Rightarrow \quad dx = \frac{dt}{f'(x)} \] ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PRACTICE EXERCISE (Exercise 2) (MISCELLANEOUS PROBLEMS)|78 Videos
  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos
  • LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos

Similar Questions

Explore conceptually related problems

int(f'(x))/(f(x))dx=log f(x)+c

"If " (d)/(dx)f(x)=f'(x), " then " int(xf'(x)-2f(x))/(sqrt(x^(4)f(x)))dx is equal to

If d/dx(f(x))=f'(x) , then int(x.f\'(x)-2f(x))/sqrt(x^4.f(x))dx (A) x^2f(x)+c (B) |x|f(x)+c (C) 2f(x)/|x|+c (D) 2sqrt(f(x))/|x|+c

Let int(dx)/(sqrt(x^(2)+1)-x)=f(x)+C such that f(0)=0 and C is the constant of integration, then the value of f(1) is

int_(0)^(a)(f(x))/(f(x)+f(a-x))dx=

If l=int(sqrt(tanx)+sqrt(cotx))dx=f(x)+c then f(x) is equal to

int(dx/((x+100) sqrt(x+99))) = f(x) +c then find f(-99)

If int1/((1+x^(2))sqrt(1-x^(2)))dx=F(x)+c " and " F(1)=0 , then for x gt 0, F(x)=

int_(0)^(a)[f(x)+f(a-x)]dx=

If int_(0)^(a)(g(x))/(f(x)+f(a-x))dx=0 , then