Home
Class 12
MATHS
int (e^(x)+e^(-x))^(2)*(e^(x)-e^(-x))dx ...

`int (e^(x)+e^(-x))^(2)*(e^(x)-e^(-x))dx` is equal to

A

`e^(x)+C`

B

`(1)/(2)(e^(x)-e^(-x))^(2)+C`

C

`(1)/(2)(e^(x)+e^(-x))^(2)+C`

D

`(1)/(3)(e^(x)+e^(-x))^(3)+C`

Text Solution

Verified by Experts

The correct Answer is:
D

Let `l=int(e^(x)+e^(-x))^(2).(e^(x)-e^(-x))dx`
Put `e^(x)+e^(-x)=t rArr (e^(x)-e^(-x))dx=dt`
`therefore" "l=int t^(2)dt=(t^(3))/(3)+C=((e^(x)+e^(-x))^(3))/(3)+C`
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PRACTICE EXERCISE (Exercise 2) (MISCELLANEOUS PROBLEMS)|78 Videos
  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos
  • LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos

Similar Questions

Explore conceptually related problems

int _(-1)^(1) (e^(x^(3)) +e^(-x^(3))) (e^(x)-e^(-x)) dx is equal to

int(dx)/(e^(x)+e^(-x)) is equal to

int(dx)/(e^(x)+e^(-x)) is equal to :

int(dx)/(e^(x)+e^(-x)) is equal to

int(e^(2x)+e^(-2x))/(e^(x)+e^(-x))dx=

(2) int(1)/(e^(x)+e^(-x))dx is equal to

int((e^(x)+e^(-x))^(2))/((e^(x)-e^(-x))^(2))dx=

inte^(x)(e^(x)-e^(-x))dx=

int(dx)/(e^(x)+e^(-x)+2) is equal to

int (e^(2x) +e^(-2x))/(e^(x)) dx