Home
Class 12
MATHS
The value of int(1)/(x+sqrt(x-1))dx, is...

The value of `int(1)/(x+sqrt(x-1))dx`, is

A

`log(x+sqrt(x-1))+sin^(-1)(sqrt((x-1)/(x)))+C`

B

`log(x+sqrt(x-1))+C`

C

`log(x+sqrt(x-1))-(2)/(sqrt3)tan^(-1)((2sqrt(x-1)+1)/(sqrt3))+C`

D

None of the above

Text Solution

Verified by Experts

The correct Answer is:
C

Let `l=int(dx)/(x+sqrt(x-1))`
Put`" "x=t^(2)+1 rArr dx=2tdt`
`therefore" "l=int(2t)/(t^(2)+t+1)dt=int(2t+1)/(t^(2)+t+1)dt-int(1)/(t^(2)+t+1)dt`
`=log(t^(2)+t+1)-int(1)/((t+(1)/(2))^(2)+((sqrt3)/(2))^(2))dt`
`=log(t^(2)+t+1)-(2)/(sqrt3)tan^(-1)((2t+1)/(sqrt3))`
`=log(x+sqrt(x-1))-(2)/(sqrt3)tan^(-1)((2sqrt(x-1)+1)/(sqrt3))+C`
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PRACTICE EXERCISE (Exercise 2) (MISCELLANEOUS PROBLEMS)|78 Videos
  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos
  • LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos

Similar Questions

Explore conceptually related problems

int(1)/(sqrt(x)(1+x))dx

The value of int(dx)/sqrt(1-x) is

The value of int(dx)/(x(sqrt(1-x^(3)))) is equal to

int(1/sqrt(x)-sqrt(x))dx

int(1)/(sqrt(x)+sqrt(x-1))dx

int(x-1)sqrt(x+1)dx

int(dx)/((x+1)sqrt(x-1))=

The value of int(sqrt(1+x))/(x)dx , is