Home
Class 12
MATHS
int[sin(logx)+cos(logx)]dx...

`int[sin(logx)+cos(logx)]dx`

A

`x log (logx)+C`

B

`sin(logx)+C`

C

`cos(logx)+C`

D

`x sin (logx)+C`

Text Solution

Verified by Experts

The correct Answer is:
D

`int[sin(logx)+cos(logx)]dx`
`=intsin(logx)dx+intcos(logx)dx`
`=x sin (logx)-int(xcos (logx))/(x)dx+intcos(logx)dx+C`
`=x sin (logx)+C`
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PRACTICE EXERCISE (Exercise 2) (MISCELLANEOUS PROBLEMS)|78 Videos
  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos
  • LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following : int_(1)^(pi//2)[sin (logx)+cos(logx)]dx.

Evaluate: int[tan(logx)+sec^2(logx)]dx

int cos(logx)dx=?

int[f(logx)+f'(logx)]dx=

int[f(logx)+f'(logx)]dx=

int7^(x logx)(1+logx)dx=

int(cos(logx))/(x)dx

int(log(logx))/(x.logx)dx=

int (log x)/(1+logx)^2 dx