Home
Class 12
MATHS
The value of the integral intx sin^(-1)x...

The value of the integral `intx sin^(-1)xdx` is equal to

A

`(1)/(2)x^(2)sin^(-1)x+(1)/(4)xsqrt(1-x^(2))-(1)/(4)sin^(-1)x+C`

B

`(1)/(2)x^(2)sin^(-1)x-(1)/(4)xsqrt(1-x^(2))-(1)/(4)sin^(-1)x+C`

C

`(1)/(2)x^(2)sin^(-1)x+(1)/(4)xsqrt(1-x^(2))+(1)/(4)sin^(-1)x+C`

D

`(1)/(2)x^(2)sin^(-1)x+(1)/(4)sqrt(1-x^(2))-(1)/(4)sin^(-1)x+C`

Text Solution

Verified by Experts

The correct Answer is:
A

Let `l=int x sin^(-1)xdx`
On using integration by parts, we get
`l=(sin^(-1)x)(x^(2))/(2)-int(1)/(sqrt(1-x^(2))).(x^(2))/(2)dx`
`rArr" "l=(x^(2))/(2)sin^(-1)x+(1)/(2)int(-x^(2))/(sqrt(1-x^(2)))dx`
`=(x^(2))/(2)sin^(-1)x+(1)/(2)int(1-x^(2)-1)/(sqrt(1-x^(2)))dx`
`rArr" "=(x^(2))/(2)sin^(-1)x+(1)/(2){int(1-x^(2))/(sqrt(1-x^(2)))dx-int(1)/(sqrt(1-x^(2)))dx}`
`rArr ,=(x^(2))/(2)sin^(-1)x+(1)/(2){int sqrt(1-x^(2))dx-int(1)/(sqrt(1-x^(2)))dx}`
`=(x^(2))/(2)sin^(-1)x+(1)/(2)[{(1)/(2)xsqrt(1-x^(2))+(1)/(2)sin^(-1)x}-sin^(-1)x]+C`
`rArr l=(1)/(2)x^(2)sin^(-1)x+(1)/(4)xsqrt(1-x^(2))-(1)/(4)sin^(-1)x+C`
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PRACTICE EXERCISE (Exercise 2) (MISCELLANEOUS PROBLEMS)|78 Videos
  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos
  • LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos

Similar Questions

Explore conceptually related problems

(a) int sin^(-1)xdx

int sin^(3)x cos xdx is equal to

intlogx.sin^-1xdx

If the real part of the complex number (1 - cos theta + 2 i sin theta) ^(-1) is (1)/(5) for theta in (0, pi), then the value of the integral int _(0) ^(theta) sin xdx is equal to :

int_(-1)^(1)sin^(11)xdx is equal to

intx^3.tan^-1xdx

Evaluate the following integrals: intxsin^(-1)xdx

intx^(2)/(1+x^(6))dx is equal to

The value of the integral intx^((1)/(3))(1-sqrtx)^(3)dx is equal to (where c is the constant of integration)