Home
Class 12
MATHS
If int ((x^2-x+1)/(x^2+1) ) e^(cot^(-1)x...

If `int ((x^2-x+1)/(x^2+1) ) e^(cot^(-1)x dx)=A(x) e^(cot^(-1)x)+c, A=`

A

`-x`

B

x

C

`sqrt(1-x)`

D

`sqrt(1+x)`

Text Solution

Verified by Experts

The correct Answer is:
B

`LHS=int[(x^(2)+1)/(x^(2)+1)-(x)/(x^(2)+1)]e^(cot^(-1)x)dx`
`=int1.e^(cot^(-1)x)dx-int(1)/(x^(2)+1)e^(cot^(-1)x)dx`
On integration by parts, we get
`xe^(cot(-1)x)-int x.e^(cot^(-1)x)(-(1)/(1+x^(2)))dx-int(x)/(1+x^(2))e^(cot^(-1)x)dx+C`
`=xe^(cot^(-1)x)+C`
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PRACTICE EXERCISE (Exercise 2) (MISCELLANEOUS PROBLEMS)|78 Videos
  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos
  • LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos

Similar Questions

Explore conceptually related problems

int((x^(2)-x+1)/(x^(2)+1))e^(cot-1)xdx=A(x)e^(cot-1)x+c,A=

int ((x ^(2) -x+1)/(x ^(2) +1)) e ^(cot^(-1) (x))dx =f (x) .e ^(cot ^(-1)(x)) +C where C is constant of integration. Then f (x) is equal to:

cot^(-1)(e^(x))

e^(cot(-1)x)+x^(sqrt(x))

" 1) "int(cot^(-1)x)/(1+x^(2))dx=

" (i) "int e^(cot^(-1)x)*(1)/(1+x^(2))dx

int e^(tan^(-1)x)(1+x+x^(2))d(cot^(-1)x) is equal to

log_(e)sin^(-1)x^(2)(cot^(-1)x^(2))

int (e^(2x)-1)/(e^(2x)+1) dx=?