Home
Class 12
MATHS
int{log(logx)+(1)/((logx)^(2))}dx=x {f (...

`int{log(logx)+(1)/((logx)^(2))}dx=x {f (x)-g(x)}+C`, then

A

`f(x)=log(logx),g(x)=(1)/(logx)`

B

`f(x)=logx, g(x)=(1)/(logx)`

C

`f(x)=(1)/(logx),g(x)=log(logx)`

D

`f(x)=(1)/(xlogx),g(x)=(1)/(logx)`

Text Solution

Verified by Experts

The correct Answer is:
A

Given, `int[log(logx)+(1)/((logx)^(2))]dx`
`=x[f(x)-g(x)]+C`
`LHS=int underset("II")(1).log underset("I")((logx))dx+int(1)/((logx)^(2))dx`
On integration by parts, we get
`xlog(logx)-int(1)/(logx)dx+int(1)/((logx)^(2))dx `
Again using integration by parts, we get
`xlog(logx)-(x)/(logx)-int(1)/((logx)^(2))dx+int(1)/((logx)^(2)dx+C`
`=x[log(logx)-(1)/(logx)]+C`
`therefore f(x)=log(logx),g(x)=(1)/(logx)`
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PRACTICE EXERCISE (Exercise 2) (MISCELLANEOUS PROBLEMS)|78 Videos
  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos
  • LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos

Similar Questions

Explore conceptually related problems

int(log(logx))/(x.logx)dx=

int(log(x//e))/((logx)^(2))dx=

int1/(x(1-logx)^(2))dx=

Evaluate : int {log(logx)+(1)/((logx)^(2))}dx

Evaluate the following integrals: int{log(logx)+(1)/((logx)^(2))}dx

int(1)/(x(logx))dx=?

int(logx)/(x(1+logx)(2+logx))dx=

If int[(logx-1)/(1+(logx)^2)]^2dx=f(x)/(1+(g(x))^2)+c , then (A) f(x)=x (B) f(x)=x^2 (C) g(x)=logx (D) g(x)=(logx)^2

int(logx)/(x^(2))dx=?

int(1+logx)/(x(2+log x)(3+logx))dx