Home
Class 12
MATHS
inttan^(-1)xdx=….+C...

`inttan^(-1)xdx=….+C`

A

`(1)/(1+x^(2))`

B

`x tan^(-1)x+(1)/(2)log|1+x^(2)|`

C

`x tan^(-1)x+(1)/(2).(tan^(-1)x)/(1+x^(2))`

D

`x tan^(-1)x-(1)/(2)log|1+x^(2)|`

Text Solution

Verified by Experts

The correct Answer is:
D

Let `l=int tan^(-1)underset("I")(x).underset("II")(1)dx`
On integration by parts, we get
`tan^(-1)x.x-int(1)/(1+x^(2)).x dx = x tan^(-1)-l_(1)" …(i)"`
where, `" "l_(1)=int(x)/(1+x^(2))dx`
Put `1+x^(2)=t rArr x dx=(1)/(2)dt`
`therefore" "l_(1)=(1)/(2)int (1)/(t)dt=(1)/(2)log t=(1)/(2)log(1+x^(2))`
On putting the value of `l_(1)` in Eq. (i), we get
`l=x tan^(-1)x-(1)/(2)log(1+x^(2))+C`
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PRACTICE EXERCISE (Exercise 2) (MISCELLANEOUS PROBLEMS)|78 Videos
  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos
  • LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos

Similar Questions

Explore conceptually related problems

int tan^(-1)xdx

intsin^(-1)xdx

intsin^(-1)xdx

intsec^(-1)xdx=

int cot^(-1)xdx

intcos^(-1)xdx=

Evaluate : intxtan^(-1)xdx

if int x tan^(-1)xdx=u tan^(-1)x-(x)/(2)+c then u=

inttan(sin^(-1)x)dx=

inttan^2(2x-3)dx