Home
Class 12
MATHS
If f(x)=(sin^(-1)x)/(sqrt(1-x^(2))) and ...

If `f(x)=(sin^(-1)x)/(sqrt(1-x^(2))) and g(x)=e^(sin^(-1)x),` then `int f(x)g(x)dx` is equal to

A

`e^(sin^(-1)x)(sin^(-1)x-1)+C`

B

`e^(sin^(-1)x)+C`

C

`e^((sin^(-1)x)^(2))+C`

D

`e^(2sin^(-1)x)+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int f(x) g(x) \, dx \), where \( f(x) = \frac{\sin^{-1} x}{\sqrt{1 - x^2}} \) and \( g(x) = e^{\sin^{-1} x} \), we can follow these steps: ### Step 1: Substitute \( t = \sin^{-1} x \) Let \( t = \sin^{-1} x \). Then, we differentiate both sides: \[ \frac{dt}{dx} = \frac{1}{\sqrt{1 - x^2}} \implies dx = \sqrt{1 - x^2} \, dt \] This means \( \sqrt{1 - x^2} = \cos(t) \) since \( \sin^2(t) + \cos^2(t) = 1 \). ### Step 2: Rewrite the integral Substituting \( t \) into the integral, we have: \[ \int f(x) g(x) \, dx = \int \frac{t}{\cos(t)} e^t \cos(t) \, dt \] The \( \cos(t) \) terms cancel out: \[ = \int t e^t \, dt \] ### Step 3: Use integration by parts To solve \( \int t e^t \, dt \), we apply integration by parts. Let: - \( u = t \) and \( dv = e^t \, dt \) Then, we find \( du = dt \) and \( v = e^t \). Using the integration by parts formula \( \int u \, dv = uv - \int v \, du \): \[ \int t e^t \, dt = t e^t - \int e^t \, dt \] Calculating the remaining integral: \[ = t e^t - e^t + C \] ### Step 4: Substitute back for \( t \) Now, we substitute back \( t = \sin^{-1} x \): \[ = \sin^{-1} x \cdot e^{\sin^{-1} x} - e^{\sin^{-1} x} + C \] Factoring out \( e^{\sin^{-1} x} \): \[ = e^{\sin^{-1} x} (\sin^{-1} x - 1) + C \] ### Final Answer Thus, the integral \( \int f(x) g(x) \, dx \) is: \[ \int f(x) g(x) \, dx = e^{\sin^{-1} x} (\sin^{-1} x - 1) + C \] ---

To solve the integral \( \int f(x) g(x) \, dx \), where \( f(x) = \frac{\sin^{-1} x}{\sqrt{1 - x^2}} \) and \( g(x) = e^{\sin^{-1} x} \), we can follow these steps: ### Step 1: Substitute \( t = \sin^{-1} x \) Let \( t = \sin^{-1} x \). Then, we differentiate both sides: \[ \frac{dt}{dx} = \frac{1}{\sqrt{1 - x^2}} \implies dx = \sqrt{1 - x^2} \, dt \] This means \( \sqrt{1 - x^2} = \cos(t) \) since \( \sin^2(t) + \cos^2(t) = 1 \). ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PRACTICE EXERCISE (Exercise 2) (MISCELLANEOUS PROBLEMS)|78 Videos
  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos
  • LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos

Similar Questions

Explore conceptually related problems

if int g(x)dx=g(x), then int g(x){f(x)+f'(x)}dx is equal to

If f(x) = (X^(2))/(1+x^(2)) and g(x) = sin x then int fo g (x) cos x dx is

If int(2x-sqrt(sin^(-1)x))/(sqrt(1-x^(2)))dx=C-2sqrt(1-x^(2))-(2)/(3)sqrt(f(x)) then f(x) is equal to

Let f(x)=(sin^(2)pix)/(1+pi^(x)). Then, int[f(x)+f(-x)]dx is equal to

int{f(x)g'(x)-f'g(x)}dx equals

Let g (x )=f ( x- sqrt( 1-x ^(2))) and f ' (x) =1-x ^(2) then g'(x) equal to:

Let f(x)=sin^(-1)((2x)/(1+x^(2))) and g(x)=cos^(-1)((x^(2)-1)/(x^(2)+1)) . Then tha value of f(10)-g(100) is equal to

If f(x)=e^(g(x)) and g(x)=int_(2)^(x)(dt)/(1+t^(4)) then f'(2) is equal to