Home
Class 12
MATHS
If intf(x)dx=g(x) then intf^(-1)(x) dx i...

If `intf(x)dx=g(x)` then `intf^(-1)(x) dx` is

A

`xf^(-1)(x)+C`

B

`f{g^(-1)(x)}+C`

C

`xf^(-1)(x)-g{f^(-1)(x)}+C`

D

`g^(-1)(x)+C`

Text Solution

Verified by Experts

The correct Answer is:
C

Let `f^(-1)(x)=u rArr x=f(u)`
`rArr" "dx=f'(u)du`
`therefore" "l=int f^(-1)(x)dx=intuf'(u)du`
`rArr" "l=u f(u)-intf(u)du=uf(u)-g(u)+C`
`" "[because int f(x)dx=g(x)+C," given"]`
`therefore` On putting `u=f^(-1)(x) and f(u)=x,` we get
`l=xf^(-1)(x)-g{f^(-1)(x)}+C`
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PRACTICE EXERCISE (Exercise 2) (MISCELLANEOUS PROBLEMS)|78 Videos
  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos
  • LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos

Similar Questions

Explore conceptually related problems

If int f(x)dx=g(x) then int f^(-1)(x)dx is

Evaluate: if int f(x)dx=g(x), then int f^(-1)(x)dx

If intf(x)dx=g(x), then intf(x)g(x)dx is equal to

If intf(x)dx=g(x),then intx^(11)f(x^(6))dx is equal to

If intf(x)dx=F(x), then int(f(x))/(F'(x))dx=

If int g(x)dx=f(x) , then : intf(x).g(x)dx=

If intf(x)dx=f(x)+c," then " f(x)=