Home
Class 12
MATHS
If int(dx)/((x+2)(x^(2)+1)) = alog|1+x^(...

If `int(dx)/((x+2)(x^(2)+1)) = alog|1+x^(2)|+btan^(-1)x+ 1/5log|x+2|+C`, then

A

`a=(-1)/(10), b=(-2)/(5)`

B

`a=(1)/(10), b=(-2)/(5)`

C

`a=(-1)/(10),b=(2)/(5)`

D

`a=(1)/(10), b=(2)/(5)`

Text Solution

Verified by Experts

The correct Answer is:
C

Let `I=int(dx)/((x+1)(x^(2)+1))`
By using partial fraction method, write
`(1)/((x+2)(x^(2)+1))=(A)/(x+2)+(Bx+C)/(x^(2)+1)`
`=(Ax^(2)+A+Bx^(2)+Cx+2Bx+2C)/((x+2)(x^(2)+1))`
`1=x^(2)(A+B)+x(C+2B)+(A+2C)`
On comparing the coefficients of `x^(2),x` and the constant on both sides, we get
`A+B=0`
`2B+C=0`
`A+2C=1`
`rArr" "A=-B`
`{:(-2A+C=0),(2A+4C=2),(_),(" "5C=2):}`
`rArr" "C=(2)/(5)`
`therefore" "A=1-2C=1-2xx(2)/(5)=1-(4)/(5)=(1)/(5) rArr B=-A=-(1)/(5)`
`therefore " "l=(1)/(5)int(1)/(x+2)dx+(-1)/(5)int(x)/(x^(2)+1)dx+(2)/(5)int(dx)/(x^(2)+1)`
`=(1)/(5)log|x+2|+((-1)/(10))log|x^(2)+1|+(2)/(5)tan^(-1)x+C`
On comparing with
`a log |1+x^(2)|+b tan^(-1)x+(1)/(5)log|x+2|+C,` we get
`a=(-1)/(10) and b=(2)/(5)`
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PRACTICE EXERCISE (Exercise 2) (MISCELLANEOUS PROBLEMS)|78 Videos
  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos
  • LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos

Similar Questions

Explore conceptually related problems

int_( then )^( If )(dx)/((x+2)(x^(2)+1))=a log|1+x^(2)|+b tan^(-1)x+(1)/(5)log|x+2|+c

int(1)/(x(log x)^(2))dx

1) int x log x^(2)dx

" "int(log x)/((1+x)^(2))dx

If int(x)/((x^(2)+1)(x-1))dx =Alogabs(x^(2)+1)+Btan^(-1)x+Clogabs(x-1)+D , then A+B+C =

If int(2x^2+3)/((x^2-1)(x^2+4))dx=alog((x-1)/(x+1))+btan^(- 1) (x/2)+C then the values of a and b are respectively (A) 1/2,1/2 (B) 1,1 (C) 1/2,1 (D) None

If int (dx)/((x^2+4)(x^2+9))=Atan^(-1)((x)/(2))+Btan^(-1)((x)/(3))+c , then A-B =

int(dx)/(sqrt(x^(2)+2x+1))=Alog|x+1|+C , x ne 1 then

If int(1)/((x^(2)+4)(x^(2)+9))dx=A" tan"^(-1)(x)/(2)+Btan^(-1)((x)/(3))+C , then A-B=

int(dx)/(sqrt(x^(2)+2x+1))=A log|x+1|+C , x!=-1