Home
Class 12
MATHS
The value of int(cos xdx)/((sinx-1)(sinx...

The value of `int(cos xdx)/((sinx-1)(sinx-2))` is equal to

A

`log|(sinx-2)/(sinx-1)|+C`

B

`log((sinx-1)/(sinx-2))+C`

C

`log(sinx-2)+C`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A

Let `l=int(cosxdx)/((sinx-1)(sinx-2))`
Put `sinx = t rArr cos x dx=dt`
`therefore" "l=int(dt)/((t-1)(t-2))=int((1)/(t-2)-(1)/(t-1))dt`
`=log|t-2|-log|t-1|+C`
`=log|(t-2)/(t-1)|+C=log|(sinx-2)/(sinx-1)|+C`
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PRACTICE EXERCISE (Exercise 2) (MISCELLANEOUS PROBLEMS)|78 Videos
  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos
  • LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos

Similar Questions

Explore conceptually related problems

int(sinx)/(sinx-a)dx is equal to

The value of int(cos^(3)x)/(sin^(2)x+sinx) dx is equal to:

The value of int(cos^(3)x)/(sin^(2)x+sinx)dx is equal to

Evaluate int(cos x)/((1-sinx)(2-sinx))dx.

The value of int(cos2x)/(cosx+sinx)dx is

The value of int(cos2x)/(sinx+cosx)^(2) dx is equal to

int(cos2x)/((sinx+cosx)^(2))dx is equal to

int(1+cos x)sinx dx

int(2sinx+(1)/(x))dx is equal to