Home
Class 12
MATHS
If int(x+2)/(2x^(2)+6x+5)dx =P int(4x+...

If `int(x+2)/(2x^(2)+6x+5)dx`
`=P int(4x+6)/(2x^(2)+6x+5)dx+(1)/(2) int (dx)/(2x^(2)+6x+5')`
Then the value of P is

A

`(1)/(3)`

B

`(1)/(2)`

C

`(1)/(4)`

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( P \) in the equation: \[ \int \frac{x+2}{2x^2 + 6x + 5} \, dx = P \int \frac{4x+6}{2x^2 + 6x + 5} \, dx + \frac{1}{2} \int \frac{1}{2x^2 + 6x + 5} \, dx \] ### Step 1: Rewrite the Numerator We can express the numerator \( x + 2 \) in terms of the derivative of the denominator \( 2x^2 + 6x + 5 \). Let: \[ f(x) = 2x^2 + 6x + 5 \] Then, \[ \frac{d}{dx} f(x) = 4x + 6 \] We can write: \[ x + 2 = A \cdot \frac{d}{dx}(2x^2 + 6x + 5) + B \] ### Step 2: Set Up the Equation Now we differentiate: \[ x + 2 = A(4x + 6) + B \] ### Step 3: Compare Coefficients Now we can compare coefficients from both sides: 1. For \( x \): \( 4A = 1 \) 2. For the constant term: \( 6A + B = 2 \) ### Step 4: Solve for A and B From \( 4A = 1 \): \[ A = \frac{1}{4} \] Substituting \( A \) into the second equation: \[ 6 \left(\frac{1}{4}\right) + B = 2 \\ \frac{3}{2} + B = 2 \\ B = 2 - \frac{3}{2} = \frac{1}{2} \] ### Step 5: Rewrite the Integral Now we can rewrite the integral: \[ \int \frac{x+2}{2x^2 + 6x + 5} \, dx = \int \left( \frac{1}{4} \cdot \frac{d}{dx}(2x^2 + 6x + 5) + \frac{1}{2} \right) \frac{1}{2x^2 + 6x + 5} \, dx \] This can be split into two integrals: \[ = \frac{1}{4} \int \frac{4x + 6}{2x^2 + 6x + 5} \, dx + \frac{1}{2} \int \frac{1}{2x^2 + 6x + 5} \, dx \] ### Step 6: Compare with Given Equation Now we can compare this with the original equation: \[ \int \frac{x+2}{2x^2 + 6x + 5} \, dx = P \int \frac{4x+6}{2x^2 + 6x + 5} \, dx + \frac{1}{2} \int \frac{1}{2x^2 + 6x + 5} \, dx \] From this, we can see that: \[ P = \frac{1}{4} \] ### Final Answer Thus, the value of \( P \) is: \[ \boxed{\frac{1}{4}} \]

To solve the problem, we need to find the value of \( P \) in the equation: \[ \int \frac{x+2}{2x^2 + 6x + 5} \, dx = P \int \frac{4x+6}{2x^2 + 6x + 5} \, dx + \frac{1}{2} \int \frac{1}{2x^2 + 6x + 5} \, dx \] ### Step 1: Rewrite the Numerator We can express the numerator \( x + 2 \) in terms of the derivative of the denominator \( 2x^2 + 6x + 5 \). ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PRACTICE EXERCISE (Exercise 2) (MISCELLANEOUS PROBLEMS)|78 Videos
  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos
  • LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos

Similar Questions

Explore conceptually related problems

int(4x+6)/(2x^(2)+5x+3)dx

int ( x +2)/( 2x ^(2) + 6x + 5) dx = p int ( 4x +6)/( 2x ^(2) + 6x +5) dx + (1)/(2) int (1)/( 2x ^(2) + 6x + 5) dx then p

int(x^(2))/(x^(2)+6x+12)dx

int(x^(2))/(x^(2)+6x-12)dx

int(x^(2))/((x^(2)+6x-3))dx

int(1)/(x^(2)(1-6x))dx=

int(x^(2))/(x^(2)-5x+6)dx=

int(x+2)(2x+6)dx

int(dx)/(7+6x-x^2)=

int(x^(2))/(2-x^(6))dx