Home
Class 12
MATHS
If int(1)/(x^(3)+x^(4))dx=(A)/(x^(2))+(...

If `int(1)/(x^(3)+x^(4))dx=(A)/(x^(2))+(B)/(x)+log|(x)/(x+1)|+C` , then

A

`A=(1)/(2), B=1`

B

`A=1, B=-(1)/(2)`

C

`A=-(1)/(2), B=1`

D

A = 1, B = 1

Text Solution

Verified by Experts

The correct Answer is:
C

`int(dx)/(x^(4)+x^(3))=int((x+1)-x)/(x^(3)(x+1))dx=int((1)/(x^(3))-(1)/(x^(2)(x+1)))dx`
`=int((1)/(x^(3))-(1)/(x^(2))+(1)/(x(x+1)))dx`
`=int((1)/(x^(3))-(1)/(x^(2))+(1)/(x)-(1)/(x+1))dx`
`=-(1)/(2x^(2))+(1)/(x)+log|x|-log|x+1|+C`
`-(1)/(2x^(2))+(1)/(x)+log|(x)/(x+1)|+C`
`therefore" "A=-(1)/(2) and B=1`
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PRACTICE EXERCISE (Exercise 2) (MISCELLANEOUS PROBLEMS)|78 Videos
  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos
  • LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos

Similar Questions

Explore conceptually related problems

If int(dx)/(x^(4)+x^(2))=(A)/(x^(2))+(B)/(x)+ln|(x)/(x+1)|+C then

int(1)/(x(3+log x))dx

If int(1)/(a^(4)-x^(4))dx=A tan^(-1)((x)/(a))+B log|(a+x)/(a-x)|+C ,then (A,B)=

int(ln x)/(x^(3))dx=A(ln x)/(x^(2))+(B)/(x^(2))+c

int_(1)^(3)(log x)/(x)dx

int(ln x)/((1+x)^(3))dx

If int(ln((x-1)/(x+1)))/(x^(2)-1)dx=(1)/(a)*(ln|(x-1)/(x+1)|)^(b)+c , then a^(2)-b^(2)-ab is equal to __________.

If int(1+x+x^(2))/(x^(2)+x^(3))dx=(a)/(x)+b.log(x+1)+c, then

(b) int_(1)^(3)(cos(log x^(2)))/(x)dx