Home
Class 12
MATHS
The value of int(3x+2)/((x-2)^(2)(x-3))d...

The value of `int(3x+2)/((x-2)^(2)(x-3))dx` is equal to

A

`11log (x-3)/(x-2)-(8)/(x-2)+C`

B

`11log (x+3)/(x+2)-(8)/(x-2)+C`

C

`11log(x-3)/(x-2)+(8)/(x-2)+C`

D

`11log (x+3)/(x+2)+(8)/(x-2)+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{3x + 2}{(x - 2)^2 (x - 3)} \, dx \), we will use the method of partial fractions. ### Step-by-step Solution: 1. **Set up the partial fraction decomposition**: We want to express the integrand as: \[ \frac{3x + 2}{(x - 2)^2 (x - 3)} = \frac{A}{x - 2} + \frac{B}{(x - 2)^2} + \frac{C}{x - 3} \] where \( A \), \( B \), and \( C \) are constants to be determined. 2. **Multiply through by the denominator**: Multiply both sides by \( (x - 2)^2 (x - 3) \): \[ 3x + 2 = A(x - 2)(x - 3) + B(x - 3) + C(x - 2)^2 \] 3. **Expand the right-hand side**: Expanding gives: \[ A(x^2 - 5x + 6) + B(x - 3) + C(x^2 - 4x + 4) \] Combining like terms, we get: \[ (A + C)x^2 + (-5A - 4C + B)x + (6A - 3B + 4C) \] 4. **Set up equations for coefficients**: Now, we equate coefficients from both sides: - For \( x^2 \): \( A + C = 0 \) (1) - For \( x \): \( -5A - 4C + B = 3 \) (2) - For the constant term: \( 6A - 3B + 4C = 2 \) (3) 5. **Solve the system of equations**: From equation (1): \( C = -A \). Substitute \( C \) into equations (2) and (3): - Equation (2): \[ -5A - 4(-A) + B = 3 \implies -5A + 4A + B = 3 \implies -A + B = 3 \implies B = A + 3 \quad (4) \] - Equation (3): \[ 6A - 3(A + 3) + 4(-A) = 2 \implies 6A - 3A - 9 - 4A = 2 \implies -A - 9 = 2 \implies -A = 11 \implies A = -11 \] Now substituting \( A \) back into equations (1) and (4): - From (1): \( C = -(-11) = 11 \) - From (4): \( B = -11 + 3 = -8 \) 6. **Substituting back into the partial fractions**: We have: \[ \frac{3x + 2}{(x - 2)^2 (x - 3)} = \frac{-11}{x - 2} + \frac{-8}{(x - 2)^2} + \frac{11}{x - 3} \] 7. **Integrate each term**: Now we can integrate term by term: \[ I = \int \left( \frac{-11}{x - 2} + \frac{-8}{(x - 2)^2} + \frac{11}{x - 3} \right) dx \] - The first integral: \[ \int \frac{-11}{x - 2} \, dx = -11 \ln |x - 2| \] - The second integral: \[ \int \frac{-8}{(x - 2)^2} \, dx = 8 \cdot \frac{1}{x - 2} \quad \text{(since } \int x^{-2} \, dx = -x^{-1} \text{)} \] - The third integral: \[ \int \frac{11}{x - 3} \, dx = 11 \ln |x - 3| \] 8. **Combine the results**: Putting it all together, we get: \[ I = -11 \ln |x - 2| + \frac{8}{x - 2} + 11 \ln |x - 3| + C \] where \( C \) is the constant of integration. ### Final Answer: \[ I = -11 \ln |x - 2| + \frac{8}{x - 2} + 11 \ln |x - 3| + C \]

To solve the integral \( I = \int \frac{3x + 2}{(x - 2)^2 (x - 3)} \, dx \), we will use the method of partial fractions. ### Step-by-step Solution: 1. **Set up the partial fraction decomposition**: We want to express the integrand as: \[ \frac{3x + 2}{(x - 2)^2 (x - 3)} = \frac{A}{x - 2} + \frac{B}{(x - 2)^2} + \frac{C}{x - 3} ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PRACTICE EXERCISE (Exercise 2) (MISCELLANEOUS PROBLEMS)|78 Videos
  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos
  • LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos

Similar Questions

Explore conceptually related problems

int(3x-2)/((x+1)^(2)(x+3))dx

int(6x+4)/((x-2)(x-3))dx is equal to

The value of int(dx)/((x+2)(x+3))

The value of int(3+2cos x)/((2+3cos x)^(2))dx is equal to

int(3x+2)/((x-1)(2x+3))dx

The value of int(dx)/(sqrt(4x-3-x^(2))) is equal to

int(dx)/((x^(3)-1)^((2)/(3))x^(2)) is equal to

int(x^(3))/((1+x^(2))^(1//3))dx is equal to

int (x+3)/(x+4)^(2)e^(x)\ dx is equal to

int(x+1)(x+2)^(7)(x+3)dx is equal to