Home
Class 12
MATHS
int(2x^(2)+3)/((x^(2)-1)(x^(2)+4))dx=alo...

`int(2x^(2)+3)/((x^(2)-1)(x^(2)+4))dx=alog((x+1)/(x-1))+b"tan"^(-1)(x)/(2)` , then (a,b) is

A

`(1, -1)`

B

`(-1, 1)`

C

`((1)/(2),-(1)/(2))`

D

`((1)/(2),(1)/(2))`

Text Solution

Verified by Experts

The correct Answer is:
D

Let `l=int(2x^(2)+3)/((x^(2)-1)(x^(2)+4))dx=int(dx)/(x^(2)-1)+int(dx)/(x^(2)+4)`
`" "[because (2x^(2)+3)/((x^(2)-1)(x^(2)+4))=(1)/(x^(2)-1)+(1)/(x^(2)+4)]`
`rArr" "l=(1)/(2)log((x-1)/(x+1))+(1)/(2)tan^(-1).(x)/(2)+C`
`But" "l=a log((x-1)/(x+1))+b tan^(-1)((x)/(2))+C`
`therefore" "a=(1)/(2), b=(1)/(2)`
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PRACTICE EXERCISE (Exercise 2) (MISCELLANEOUS PROBLEMS)|78 Videos
  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos
  • LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos

Similar Questions

Explore conceptually related problems

If int(1)/((x^(2)+1)(x^(2)+4))dx=Atan^(-1)x+B" tan"^(-1)(x)/(2)+C , then

If int(2x^2+3)/((x^2-1)(x^2+4))dx=alog((x-1)/(x+1))+btan^(- 1) (x/2)+C then the values of a and b are respectively (A) 1/2,1/2 (B) 1,1 (C) 1/2,1 (D) None

If : int(2x^(2)+3)/((x^(2)-1)(x^(2)-4))dx=log[((x-2)/(x+2))^(a).((x+1)/(x-1))^(b)]+c then : (a, b)-=

int(e^(tan^(-1)x))/((1+x^(2))^(2))dx

If int(1)/((x^(2)+4)(x^(2)+9))dx=A" tan"^(-1)(x)/(2)+Btan^(-1)((x)/(3))+C , then A-B=

int(x^(2)tan^(-1)x)/(1+x^(2))dx

prove that int(x^(2))/((x^(2)+1)(x^(2)+4))dx=-(1)/(3)tan^(-1)x+(2)/(3)tan^(-1)((x)/(2))+

int((x^(5)+x^(4)+4x^(3)+4x^(2)+4x+4))/((x^(2)+2)^(3))dx=Alog|x^(2)+2|+(1)/(sqrt(2))tan^(-1)((x)/(B))+c then B^(1/A) is equal to

int(x^(4)-2x^(2)+4x+1)/(x^(3)-x^(2)-x+1)dx