Home
Class 12
MATHS
If int(sinx)/(cosx(1+cosx))dx=f(x)+C, t...

If `int(sinx)/(cosx(1+cosx))dx=f(x)+C`, then f(x) is equal to

A

`log|(1+cosx)/(cosx)|`

B

`log|(cosx)/(1+cosx)|`

C

`log|(sinx)/(1+sinx)|`

D

`log|(1+sinx)/(sinx)|`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{\sin x}{\cos x (1 + \cos x)} \, dx \) and find \( f(x) \) such that \( \int \frac{\sin x}{\cos x (1 + \cos x)} \, dx = f(x) + C \), we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{\sin x}{\cos x (1 + \cos x)} \, dx \] ### Step 2: Substitution We use the substitution \( t = \cos x \). Then, the derivative \( dt = -\sin x \, dx \) implies \( \sin x \, dx = -dt \). Therefore, we can rewrite the integral as: \[ I = \int \frac{-dt}{t(1 + t)} \] ### Step 3: Simplifying the Integral This can be rewritten as: \[ I = -\int \frac{dt}{t(1 + t)} \] Next, we can use partial fraction decomposition: \[ \frac{1}{t(1 + t)} = \frac{A}{t} + \frac{B}{1 + t} \] Multiplying through by \( t(1 + t) \) gives: \[ 1 = A(1 + t) + Bt \] Expanding and rearranging: \[ 1 = A + At + Bt \implies 1 = A + (A + B)t \] From this, we can set up the equations: 1. \( A = 1 \) 2. \( A + B = 0 \) Solving these gives \( A = 1 \) and \( B = -1 \). Thus, we can write: \[ \frac{1}{t(1 + t)} = \frac{1}{t} - \frac{1}{1 + t} \] ### Step 4: Integrate Each Term Now, we can integrate: \[ I = -\int \left( \frac{1}{t} - \frac{1}{1 + t} \right) dt = -\left( \ln |t| - \ln |1 + t| \right) + C \] This simplifies to: \[ I = -\ln \left| \frac{t}{1 + t} \right| + C \] ### Step 5: Substitute Back Substituting back \( t = \cos x \): \[ I = -\ln \left| \frac{\cos x}{1 + \cos x} \right| + C \] This can be rewritten using properties of logarithms: \[ I = \ln \left| \frac{1 + \cos x}{\cos x} \right| + C \] ### Step 6: Final Result Thus, we find: \[ f(x) = \ln \left( \frac{1 + \cos x}{\cos x} \right) \]

To solve the integral \( \int \frac{\sin x}{\cos x (1 + \cos x)} \, dx \) and find \( f(x) \) such that \( \int \frac{\sin x}{\cos x (1 + \cos x)} \, dx = f(x) + C \), we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{\sin x}{\cos x (1 + \cos x)} \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PRACTICE EXERCISE (Exercise 2) (MISCELLANEOUS PROBLEMS)|78 Videos
  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos
  • LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos

Similar Questions

Explore conceptually related problems

If inte^(x)((1-sinx)/(1-cosx))dx=f(x)+ Constant, then f(x) is equal to

int((x-sinx)/(1+cosx))dx

int(x+sinx)/(1-cosx)dx=

int(x-sinx)/(1-cosx)dx

int(1+sinx)/((x-cosx)^(3))dx=

inte^(x)(1-sinx)/(1-cosx)dx=

inte^(x)((1+sinx)/(1+cosx))dx=

inte^(x)((1+sinx)/(1+cosx))dx=?