Home
Class 11
PHYSICS
In figure, k = 100 N//m, M = 1kg and F =...

In figure, `k = 100 N//m, M = 1kg` and `F = 10 N`

(a) Find the compression of the spring in the equilibrium position
(b) A sharp blow by some external agent imparts a speed of `2 m//s` to the block towards left. Find the sum of the potential energy of the spring and the kinetic energy of the block at this instant.
(c) Find the time period of the resulting simple harmonic motion.
(d) Find the amplitude.
(e) Write the potential energy of the spring when the block is at the left estreme.
(f) Write the potential energy of the spring when the block is at the right extreme.
The answers of (b), (e) and (f) are different. Explain why this does not violate the principle of conservation of energy ?

Text Solution

Verified by Experts

The correct Answer is:
A, B, C, D

(a) `F = kx_(0)`
`:. x_(0) = (F)/(k) = (10)/(100) = 0.1m`
(b) `E = (1)/(2)mv^(2) + (1)/(2)kx_(0)^(2)`
` = (1)/(2) xx 1 xx (2)^(2) + (1)/(2) xx 100 xx(0.1)^(2) = 2.5J`
(c) `T = 2pi sqrt ((M)/(k))`
` = 2pi sqrt((1)/(100)) = (pi)/(5) sec`
(d) From `P` to `Q`

Work done by applied force = change in mechanical energy.
`:. FA = E_(Q) - E_(P)`
`:. (10) A = (1)/(2)k (A + x_(0))^(2) - 2.5`
`= (1)/(2) xx 100(A + 0.1)^(2) - 2.5`
Solving this equation, we get
`A = 0.2m`
(e) `U_(Q) = (1)/(2)k (A + x_(0))^(2)`
` = (1)/(2) xx 100 (0.2 + 0.1)^(2)`
` = 4.5 J`
(f) p = mean position

`Q, S =` extreme position
R = natural length
`U_(S) = (1)/(2)k (0.1)^(2)`
` = (1)/(2) xx 100 xx (0.1)^(2) = 0.5J`
Due to work done by the applied force, `F`, answer are different.
Promotional Banner

Topper's Solved these Questions

  • SIMPLE HARMONIC MOTION

    DC PANDEY|Exercise Level 2 Single Correct|28 Videos
  • SIMPLE HARMONIC MOTION

    DC PANDEY|Exercise Level 2 More Than One Correct|8 Videos
  • SIMPLE HARMONIC MOTION

    DC PANDEY|Exercise Level 1 Single Correct|24 Videos
  • SEMICONDUCTORS AND ELECTRONIC DEVICES

    DC PANDEY|Exercise More than One Option is Correct|3 Videos
  • SOLVD PAPERS 2017 NEET, AIIMS & JIPMER

    DC PANDEY|Exercise Solved paper 2018(JIPMER)|38 Videos

Similar Questions

Explore conceptually related problems

The spring shown in figure is unstretched when a man starts pulling on the cord. The mass of the block is M . If the man exerts a constant force F , find (a) the amplitude and the time period of the motion of the block, (b) the energy stored in the spring when the block passes through the equilibrium position and (c) the kinetic energy of the block at this position.

A block of mass m held touching the upper end of a light spring of force constant K as shown in figure. Find the maximum potential energy stored in the spring if the block is released suddenly on the spring.

Each of the blocks shown in figure has mass 1 kg. The rear block moves with a speed of 2 m/s towards the front block kept at rest. The spring attached to the front block islight and has a spring constant 50 N/m. find the maximum compression of the spring.

The block shown in figure is released from rest. Find out the speed of the block when the spring is compressed by 1 m

A block of mass m compresses a spring iof stifffness k through a distacne l//2 as shown in the figure .If the block is not fixed to the spring the period of motion of the block is

A block of mass m is initially moving to the right on a horizontal frictionless surface at a speed v. It then compresses a spring of spring constant k. At the instant when the kinetic energy of the block is equal to the potential energy of the spring, the spring is compressed a distance of :

Concerete block of mass m_(A) and m_(B) . The gravitutional potential energy of each system is zero at the equilibrium position of the springs. Which ststement is true for the total machanical energy of the springs. Which system when the block , are balanced on the springs?

A force of 10 N holds an ideal spring with a 20 N/m spring constant in compression. The potential energy stored in the spring is

DC PANDEY-SIMPLE HARMONIC MOTION-Level 1 Subjective
  1. A body makes angular simple harmonic motion of amplitude pi//10rad and...

    Text Solution

    |

  2. A particle executes simple harmonic motion of period 16 s. Two seconds...

    Text Solution

    |

  3. A simple pendulum consists of a small sphere of mass m suspended by a ...

    Text Solution

    |

  4. Find the period of oscillation of a pendulum of length l if its point ...

    Text Solution

    |

  5. A block with mass M attached to a horizontal spring with force constan...

    Text Solution

    |

  6. A bullet of mass m strikes a block of mass M. The bullet remains embed...

    Text Solution

    |

  7. An annular ring of internal and outer radii r and R respectively oscil...

    Text Solution

    |

  8. A body of mass 200 g oscillates about a horizontal axis at a distance ...

    Text Solution

    |

  9. Show that the period of oscillation of simple pendulum at depth h belo...

    Text Solution

    |

  10. The period of a particle in SHM is 8 s. At t = 0 it is in its equilibr...

    Text Solution

    |

  11. (a) The motion of the particle in simple harmonic motion is given by...

    Text Solution

    |

  12. Show that the combined spring energy and gravitational energy for a ma...

    Text Solution

    |

  13. The masses in figure slide on a frictionless table. m(1) but not m(2),...

    Text Solution

    |

  14. The spring shown in figure is unstretched when a man starts pulling on...

    Text Solution

    |

  15. In figure, k = 100 N//m, M = 1kg and F = 10 N (a) Find the compre...

    Text Solution

    |

  16. Pendulum A is a physical pendulum made from a thin, rigid and uniform ...

    Text Solution

    |

  17. A solid cylinder of mass m is attached to a horizontal spring with for...

    Text Solution

    |

  18. A cord is attached between a 0.50 kg block and a string with force con...

    Text Solution

    |

  19. Two linear SHM of equal amplitudes A and frequencies omega and 2omega ...

    Text Solution

    |

  20. A particle is subjected to two simple harmonic motions given by x(1)...

    Text Solution

    |