Home
Class 11
PHYSICS
A solid sphere of mass M is placed on th...

A solid sphere of mass `M` is placed on the top of a plank of the same mass, after giving an angular velocity `omega_(0)` at `t= 0`. Find the velocity of the plank and the sphere when the sphere starts rolling:,

Text Solution

Verified by Experts

Step 1: Free body diagram

Step 2: Equation of motion,
`muMg=MAimpliesA=mug` (backward)
(A will be positive)
sphere
`muMg=MAimplies a=mug` (forward)
(a will be positive)
Step: Torque equation
`muMgR=(2/5MR^(2))alpha`
`alpha=5/2(mug)/R` (anticlockwise)
(it will be negative )
Step 4: constraint relation

`V_(P)=V=omegaR=v`
`(0+mugt)=(omega_(0)-5/2(mug)/Rt)R-(0+mug t)`
`(2mu"gt"+5/2mu"gt")=omega_(0)Rimplies(9mut)/2=omega_(0)R`
`implies t-(2omega_(0)R)/(9mug)`
Velocity of the plane when rolling starts
`V=0+mu"gt" `
`V_("plank")=mugxx(2omega_(0)R)/(9mug)=2/9omega_(0)R`
velocity of the sphere when rolling starts
`V_("sphere")=0+mug t=2/9omega_(0)R`
Promotional Banner

Topper's Solved these Questions

  • RIGID BODY DYNAMICS 2

    CENGAGE PHYSICS|Exercise Exercise 3.4|13 Videos
  • RIGID BODY DYNAMICS 2

    CENGAGE PHYSICS|Exercise Subjective|19 Videos
  • RIGID BODY DYNAMICS 2

    CENGAGE PHYSICS|Exercise Exercise 3.2|13 Videos
  • RIGID BODY DYNAMICS 1

    CENGAGE PHYSICS|Exercise Integer|11 Videos
  • SOUND WAVES AND DOPPLER EFFECT

    CENGAGE PHYSICS|Exercise Integer|16 Videos

Similar Questions

Explore conceptually related problems

A plank of mass M rests on a smooth horizontal plane. A sphere of mass m and radius r is placed on the rough upper surface of the plank and the plank is suddenly given a velocity v in the direction of its length. Find the time after which the sphere begins pure rolling, if the coefficient of friction between the plank and the sphere is mu and the plank is sufficiently long.

A uniform solid sphere of radius R , rolling without sliding on a horizontal surface with an angular velocity omega_(0) , meets a rough inclined plane of inclination theta = 60^@ . The sphere starts pure rolling up the plane with an angular velocity omega Find the value of omega .

A solid sphere of radius r and mass m rotates about an axis passing through its centre with angular velocity omega . Its K.E . Is

solid sphere of radius r is gently placed on a rough horizontal ground with an initial angular speed omega_(0) and no linear velocity. If the coefficient of friction is mu , find the time t when the slipping stops. in addition state the linear velocity v and angular velocity omega at the end of slipping

A solid sphere of mass m and radius R is placed over a plank of same mass m . There is sufficient friction between sphere and plank to prevent slipping. Acceleration of centre of mass of sphere is

Assertion : A solid and a hollow sphere both of equal masses and radii are put on a rough surface after rotating with some angular velocity say omega_(0) . Coefficient of friction for both the spheres and ground is same. Solid sphere will start pure rolling first Reason : Radius of gyration of hollow sphere about an axis passing through its centre of mass is more.

A small body of mass 'm' is placed at the top of a smooth sphere of radius 'R' placed on a horizontal surface as shown, Now the sphere is given a constant horizontal acceleration a_(0) = g . The velocity of the body relative to the sphere at the moment when it loses contact with the sphere is

A solid sphere of mass m and radius R is placed over a plank of same mass m . There is sufficient friction between sphere and plank to prevent slipping. Force of friction between sphere and plank is

CENGAGE PHYSICS-RIGID BODY DYNAMICS 2-Exercise 3.3
  1. A sphere moving with a velocity v(0) on a smooth surface suddenly ente...

    Text Solution

    |

  2. A cylinder of mass at and radius R rolls on a stationary plank of mass...

    Text Solution

    |

  3. Calculate the kinetic energy of a tractor crawler belt of mass m if th...

    Text Solution

    |

  4. A constant horizontal force of 10 N is applied at the centre of a whee...

    Text Solution

    |

  5. A uniform solid cylinder of mass m rests on two horizontal planks. A t...

    Text Solution

    |

  6. A load of mass m is attached to the end of a string wound on a cylinde...

    Text Solution

    |

  7. Find the tension in the tape and the linear acceleration of the cylind...

    Text Solution

    |

  8. A spool (consider it as a double disc system joined by a short tube at...

    Text Solution

    |

  9. A solid cylinder wheel of mass M and radius R is pulled by a force F a...

    Text Solution

    |

  10. Find the acceleration of a system consisting of a cylinder of mass m a...

    Text Solution

    |

  11. A uniform solid cylinder of mass m rests on two horizontal planks as s...

    Text Solution

    |

  12. A bullet of mass m moving with a velocity of u just grazes the top of ...

    Text Solution

    |

  13. A small solid marble of mass M and radius r rolls down along the loop ...

    Text Solution

    |

  14. A solid sphere of mass M is placed on the top of a plank of the same m...

    Text Solution

    |

  15. A ball of mass m is released from rest from a height H along a smooth,...

    Text Solution

    |

  16. A sphere of mass m and radius R rolls without sliding on a horizontal ...

    Text Solution

    |

  17. Find the acceleration of the body if a force F=8 N pulls the string at...

    Text Solution

    |

  18. A cotton reel rolls without sliding such that the point P of the strin...

    Text Solution

    |

  19. A cotton reel rolls without sliding such that the point P of the strin...

    Text Solution

    |

  20. A uniform solid sphere rolls down a vertical surface without sliding. ...

    Text Solution

    |