Home
Class 12
MATHS
If alpha,beta,gamma are the roots of x^(...

If `alpha,beta,gamma` are the roots of `x^(3)+2x^(2)-x-3=0` The value of `|{:(alpha, beta ,gamma),(gamma,alpha ,beta),(beta,gamma ,alpha):}|` is equal to

A

14

B

-2

C

10

D

-14

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant given the roots of the polynomial \( x^3 + 2x^2 - x - 3 = 0 \). The roots are denoted as \( \alpha, \beta, \gamma \). We will denote the determinant as: \[ D = \begin{vmatrix} \alpha & \beta & \gamma \\ \gamma & \alpha & \beta \\ \beta & \gamma & \alpha \end{vmatrix} \] ### Step 1: Find the roots' relationships From Vieta's formulas, for the polynomial \( x^3 + 2x^2 - x - 3 = 0 \): - The sum of the roots \( \alpha + \beta + \gamma = -\frac{b}{a} = -\frac{2}{1} = -2 \) (Equation 1) - The sum of the products of the roots taken two at a time \( \alpha\beta + \beta\gamma + \gamma\alpha = \frac{c}{a} = -\frac{-1}{1} = -1 \) (Equation 2) - The product of the roots \( \alpha\beta\gamma = -\frac{d}{a} = -\frac{-3}{1} = 3 \) (Equation 3) ### Step 2: Set up the determinant We can express the determinant \( D \) as follows: \[ D = \begin{vmatrix} \alpha & \beta & \gamma \\ \gamma & \alpha & \beta \\ \beta & \gamma & \alpha \end{vmatrix} \] ### Step 3: Simplify the determinant To simplify the determinant, we can perform row operations. We can add all three rows together: \[ R_1 + R_2 + R_3 \rightarrow R_1 \] This gives us: \[ D = \begin{vmatrix} \alpha + \beta + \gamma & \alpha + \beta + \gamma & \alpha + \beta + \gamma \\ \gamma & \alpha & \beta \\ \beta & \gamma & \alpha \end{vmatrix} \] ### Step 4: Factor out the common term We can factor out \( \alpha + \beta + \gamma \) from the first row: \[ D = (\alpha + \beta + \gamma) \begin{vmatrix} 1 & 1 & 1 \\ \gamma & \alpha & \beta \\ \beta & \gamma & \alpha \end{vmatrix} \] ### Step 5: Compute the remaining determinant Now we need to compute the determinant: \[ D' = \begin{vmatrix} 1 & 1 & 1 \\ \gamma & \alpha & \beta \\ \beta & \gamma & \alpha \end{vmatrix} \] Expanding this determinant along the first row: \[ D' = 1 \cdot \begin{vmatrix} \alpha & \beta \\ \gamma & \alpha \end{vmatrix} - 1 \cdot \begin{vmatrix} \gamma & \beta \\ \beta & \alpha \end{vmatrix} + 1 \cdot \begin{vmatrix} \gamma & \alpha \\ \beta & \gamma \end{vmatrix} \] Calculating these 2x2 determinants: 1. \( \begin{vmatrix} \alpha & \beta \\ \gamma & \alpha \end{vmatrix} = \alpha^2 - \beta\gamma \) 2. \( \begin{vmatrix} \gamma & \beta \\ \beta & \alpha \end{vmatrix} = \gamma\alpha - \beta^2 \) 3. \( \begin{vmatrix} \gamma & \alpha \\ \beta & \gamma \end{vmatrix} = \gamma^2 - \beta\alpha \) Combining these results: \[ D' = (\alpha^2 - \beta\gamma) - (\gamma\alpha - \beta^2) + (\gamma^2 - \beta\alpha) \] ### Step 6: Substitute the known values Now substituting \( \alpha + \beta + \gamma = -2 \) and \( \alpha\beta + \beta\gamma + \gamma\alpha = -1 \): \[ D' = \alpha^2 + \beta^2 + \gamma^2 - (\beta\gamma + \gamma\alpha + \beta\alpha) \] Using the identity \( \alpha^2 + \beta^2 + \gamma^2 = (\alpha + \beta + \gamma)^2 - 2(\alpha\beta + \beta\gamma + \gamma\alpha) \): \[ \alpha^2 + \beta^2 + \gamma^2 = (-2)^2 - 2(-1) = 4 + 2 = 6 \] Thus: \[ D' = 6 - (-1) = 6 + 1 = 7 \] ### Step 7: Final calculation Now substituting back into our expression for \( D \): \[ D = (-2) \cdot 7 = -14 \] ### Conclusion The value of the determinant is: \[ \boxed{-14} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (Single Integer Answer Type Questions)|10 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (Statement I And Ii Type Questions)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|38 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos

Similar Questions

Explore conceptually related problems

If alpha, beta, gamma are the roots of x^(3) + ax^(2) + b = 0 , then the value of |(alpha,beta,gamma),(beta,gamma,alpha),(gamma,alpha,beta)| , is

if alpha,beta,gamma are roots of 2x^(3)+x^(2)-7=0 then find the value of sum_(alpha,beta,gamma)((alpha)/(beta)+(beta)/(gamma))

If alpha,beta,gamma, are the roots of 2x^(3)-x+1=0 then the value of alpha^(3)+beta^(3)+gamma^(3) is

If alpha, beta, gamma are roots of x^(3)-2x^(2)+7x-1=0 then the value of (alpha+beta-gamma) (beta+gamma-alpha) (alpha+gamma-beta)

If alpha,beta,gamma are the roots of the equation x^(3)-px^(2)+qx-r=0 find the value of (beta+gamma)(gamma+alpha)(alpha+beta)

If alpha,beta,gamma are the roots of x^(3)+2x^(2)+3x+8=0 then (alpha+beta)(beta+gamma)(gamma+alpha)=

If alpha, beta, gamma are the roots of x^(3)-px^(2)+qx-r=0 then (alpha+beta)(beta+gamma)(gamma+alpha) =

ARIHANT MATHS-DETERMINANTS -Exercise (Passage Based Questions)
  1. Consider the system of equations x+y+z=5, x+2y+3z=9, x+3y+lambda z=m...

    Text Solution

    |

  2. Consider the system of equations x+y+z=5, x+2y+3z=9, x+3y+lambda z=m...

    Text Solution

    |

  3. If Delta=|{:(a(11),a(12),a(13)),(a(21),a(22),a(23)),(a(31),a(32),a(33)...

    Text Solution

    |

  4. If Delta=|{:(a(11),a(12),a(13)),(a(21),a(22),a(23)),(a(31),a(32),a(33)...

    Text Solution

    |

  5. If Delta=|{:(a(11),a(12),a(13)),(a(21),a(22),a(23)),(a(31),a(32),a(33)...

    Text Solution

    |

  6. If alpha,beta,gamma are the roots of x^(3)+2x^(2)-x-3=0 The value of ...

    Text Solution

    |

  7. If alpha,beta,gamma are the roots of x^(3)+2x^(2)-x-3=0. If the abso...

    Text Solution

    |

  8. If alpha,beta,gamma are the roots of x^(3)+2x^(2)-x-3=0. If a = al...

    Text Solution

    |

  9. Suppose f(x) is a function satisfying the folowing conditions: (i)f(...

    Text Solution

    |

  10. Suppose f(x) is a function satisfying the folowing conditions: (i)f(...

    Text Solution

    |

  11. Suppose f(x) is a function satisfying the folowing conditions: (i)f(...

    Text Solution

    |

  12. If |{:(x,e^(x-1),(x-1)^(3)),(x-lx,cos(x-1),(x-1)^(2)),(tanx,sin^(2)x,c...

    Text Solution

    |

  13. If |{:(x,e^(x-1),(x-1)^(3)),(x-lx,cos(x-1),(x-1)^(2)),(tanx,sin^(2)x,c...

    Text Solution

    |

  14. If |{:(x,e^(x-1),(x-1)^(3)),(x-lx,cos(x-1),(x-1)^(2)),(tanx,sin^(2)x,c...

    Text Solution

    |

  15. Let Delta =|{:(-bc,b^(2)+bc,c^(2)+bc),(a^(2)+ac,-ac,c^(2)+ac),(a^(2)+a...

    Text Solution

    |

  16. Let Delta =|{:(-bc,b^(2)+bc,c^(2)+bc),(a^(2)+ac,-ac,c^(2)+ac),(a^(2)+a...

    Text Solution

    |

  17. Let Delta =|{:(-bc,b^(2)+bc,c^(2)+bc),(a^(2)+ac,-ac,c^(2)+ac),(a^(2)+a...

    Text Solution

    |

  18. If Deltan=|{:(a^(2)+n,ab,ac),(ab,b^(2)+n,bc),(ac,bc,c^(2)+n):}|,n in ...

    Text Solution

    |

  19. If Deltan=|{:(a^(2)+n,ab,ac),(ab,b^(2)+n,bc),(ac,bc,c^(2)+n):}|,n in ...

    Text Solution

    |

  20. If Deltan=|{:(a^(2)+n,ab,ac),(ab,b^(2)+n,bc),(ac,bc,c^(2)+n):}|,n in ...

    Text Solution

    |