Home
Class 12
MATHS
Show that the determinant Delta (x) is g...

Show that the determinant `Delta` (x) is given by `Delta`(x) =
`|{:(sin(x+alpha),cos(x+alpha),a+xsinalpha),(sin(x+beta),cos(x+beta),b+xsinbeta),(sin(x+gamma),cos(x+gamma),c+xsingamma):}|` is independent of x.

Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (Statement I And Ii Type Questions)|7 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|38 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos

Similar Questions

Explore conceptually related problems

Show that |{:(-1+xsinalpha,cos(x+alpha),sin(x+alpha)),(13+x sin beta,cos(x+beta),sin(x+beta)),(-12+x sin gamma,cos (x+gamma),sin(x+gamma)):}| is independent of x.

Prove that det [[sin alpha, cos alpha, sin (alpha + delta) sin beta, cos beta, sin (beta + delta) sin gamma, cos gamma, sin (gamma + delta)]] = 0

If Delta=|(sin alpha, cos alpha, sin alpha+cos beta),(sin beta, cos alpha, sin beta+cos beta),(sin gamma, cos alpha, sin gamma+cos beta)| then Delta equals

sin alpha, cos alpha, cos (alpha + delta) sin beta, cos beta, cos (beta + delta) sin gamma, cos gamma, cos (gamma + delta)] | = 0

Without expanding evaluate the determinant |sin alpha cos alpha sin(alpha+delta)sin beta cos beta sin(beta+delta)sin gamma cos gamma sin(gamma+delta)|

Without expanding evaluate the determinant det[[sin alpha,cos alpha sin(alpha+delta)sin beta,cos beta,sin(beta+delta)sin gamma,cos gamma,sin(gamma+delta)]]

If Delta = det [[sin alpha, cos alpha, sin alpha + cos alphasin beta, cos alpha, sin beta + cos betasin gamma, cos alpha, sin gamma + cos beta]] then Delta

The orthocentre of triangle formed by (a cos alpha,a sin alpha),(a cos beta,a sin beta),(a cos gamma,a sin gamma) is

Delta ABC has vertices A(a cos alpha,a sin alpha),B(a cos beta,a sin beta) and C(a cos gamma,a sin gamma) then its orthocentre is

Without expanding,show that the value of each of the determinants is zero: det[[sin alpha,cos alpha,cos(alpha+delta)sin beta,cos beta,cos(beta+delta)sin gamma,cos gamma,cos(gamma+delta)]]

ARIHANT MATHS-DETERMINANTS -Exercise (Subjective Type Questions)
  1. Prove that |{:(b+c,c,b),(c,c+a,a),(b,a,a+b):}| =4 abc.

    Text Solution

    |

  2. Prove that: |[a-b-c, 2a,2a],[2b,b-c-a,2b],[2c,2c,c-a-b]|=(a+b+c)^3

    Text Solution

    |

  3. Find the value of determinat |{:(sqrt(13)+sqrt(3),2sqrt(5),sqrt(5)),(...

    Text Solution

    |

  4. The value of the determinant |(bc,ca,ab),(p,q,r),(1,1,1)|, where a, b ...

    Text Solution

    |

  5. Whitout expanding the determinat at any stage prove that |{:(-5,3+5i,...

    Text Solution

    |

  6. Prove without expansion that |a h+bgga b+c h bf+b afh b+b c af+b cc bg...

    Text Solution

    |

  7. If A,B and C are the angles of a triangle and |{:(1,1,1),(1+sinA,1+si...

    Text Solution

    |

  8. The value of |{:(betagamma,betagamma'+beta'gamma,beta'gamma'),(gammaal...

    Text Solution

    |

  9. If y=(u)/(v), where u and v are functions of x, show that v^(3)(d^(2...

    Text Solution

    |

  10. Show that the determinant Delta (x) is given by Delta(x) = |{:(sin(...

    Text Solution

    |

  11. Evaluate |{:(.^(x)C(1),,.^(x)C(2),,.^(x)C(3)),(.^(y)C(1),,.^(y)C(2),,....

    Text Solution

    |

  12. (i) Find maximum value of f(x)=|{:(1+sin^(2)x,cos^(2)x,4sin2x),(sin...

    Text Solution

    |

  13. If f(x) = |[x^2-4x+6,2x^2+4x+10,3x^2-2x+16],[x-2,2x+2,3x-1],[1,2,3]| t...

    Text Solution

    |

  14. prove that |(1/(a-a1)^2,1/(a-a1),1/a1),(1/(a-a2)^2,1/(a-a2),1/a2),(1/...

    Text Solution

    |

  15. Show that in general there are three values of t for which the followi...

    Text Solution

    |

  16. Eliminates (i) a,b, and c (ii) x,y,z from the equations -a+(by)...

    Text Solution

    |

  17. If x, y, z are not all zero & if ax + by + cz=0, bx+ cy + az=0 & cx ...

    Text Solution

    |