Home
Class 12
MATHS
The value of x gt 1 satisfying the equat...

The value of `x gt 1` satisfying the equation
`int_(1)^(x) tlnt dt=(1)/(4)` is

A

`sqrte`

B

e

C

`e^(2)`

D

`e-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \int_{1}^{x} t \ln t \, dt = \frac{1}{4} \] for \( x > 1 \), we will use integration by parts. ### Step 1: Set up integration by parts We will let: - \( u = \ln t \) (which implies \( du = \frac{1}{t} dt \)) - \( dv = t \, dt \) (which implies \( v = \frac{t^2}{2} \)) ### Step 2: Apply integration by parts formula The integration by parts formula is given by: \[ \int u \, dv = uv - \int v \, du \] Applying this, we get: \[ \int t \ln t \, dt = \ln t \cdot \frac{t^2}{2} - \int \frac{t^2}{2} \cdot \frac{1}{t} \, dt \] ### Step 3: Simplify the integral The integral simplifies to: \[ \int t \ln t \, dt = \frac{t^2}{2} \ln t - \int \frac{t^2}{2t} \, dt = \frac{t^2}{2} \ln t - \int \frac{t}{2} \, dt \] Calculating the last integral: \[ \int \frac{t}{2} \, dt = \frac{t^2}{4} \] Thus, we have: \[ \int t \ln t \, dt = \frac{t^2}{2} \ln t - \frac{t^2}{4} + C \] ### Step 4: Evaluate the definite integral Now we evaluate the definite integral from 1 to \( x \): \[ \int_{1}^{x} t \ln t \, dt = \left[ \frac{t^2}{2} \ln t - \frac{t^2}{4} \right]_{1}^{x} \] Calculating the upper limit: \[ \left( \frac{x^2}{2} \ln x - \frac{x^2}{4} \right) \] Calculating the lower limit (at \( t = 1 \)): \[ \left( \frac{1^2}{2} \ln 1 - \frac{1^2}{4} \right) = 0 - \frac{1}{4} = -\frac{1}{4} \] Thus, we have: \[ \int_{1}^{x} t \ln t \, dt = \left( \frac{x^2}{2} \ln x - \frac{x^2}{4} \right) - \left( -\frac{1}{4} \right) \] This simplifies to: \[ \frac{x^2}{2} \ln x - \frac{x^2}{4} + \frac{1}{4} \] ### Step 5: Set the equation equal to \( \frac{1}{4} \) Now we set this equal to \( \frac{1}{4} \): \[ \frac{x^2}{2} \ln x - \frac{x^2}{4} + \frac{1}{4} = \frac{1}{4} \] Subtract \( \frac{1}{4} \) from both sides: \[ \frac{x^2}{2} \ln x - \frac{x^2}{4} = 0 \] ### Step 6: Factor the equation Factoring out \( \frac{x^2}{4} \): \[ \frac{x^2}{4} \left( 2 \ln x - 1 \right) = 0 \] Since \( x^2 \) cannot be zero for \( x > 1 \), we have: \[ 2 \ln x - 1 = 0 \] ### Step 7: Solve for \( x \) Solving for \( x \): \[ 2 \ln x = 1 \implies \ln x = \frac{1}{2} \implies x = e^{1/2} = \sqrt{e} \] ### Final Answer Thus, the value of \( x \) satisfying the equation is: \[ x = \sqrt{e} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 1|15 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 2|14 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

The value of x in satisfying the equation x cos x=(1)/(4)

The value of x satisfying the equation tan^(-1)(2x)+tan^(-1)3x=(pi)/(4) is

If f(x)=int_(1)^(x)(ln t)/(1+t)dt where x>0, then the values of of ^(1) satisfying the equation f(x)+f((1)/(x))=2 is

Number of values of x satisfying the equation int_(-1)^(x)(8t^(2)+(28)/(3)t+4)backslash dt=(((3)/(2))x+1)/(log_(x+1)sqrt(x+1))

The set of value of x, satisfying the equation tan^(2)(sin^(-1)x) gt 1 is :

If f(x) = int_1^x lnt/(1+t) dt where x>0 then the values of x satisfying the equation f(x)+f(1/x) = 2 are (i)2 (ii)e (iii)e^(-2) (iv)e^(2)

The largest integral value of x satisfying the inequality (tan^(-1)(x))^(2)-4(tan^(-1)(x))+3gt0 is :

The value of a for which the equation int_(0)^(x)sin^(2)((t)/(2))dt=a^(2)x^(2)-(1)/(2)(3x-1)+(1)/(a^(2)) possess a solutio are:

Let f be a continuous function satisfying the equation int_(0)^(x)f(t)dt+int_(0)^(x)tf(x-t)dt=e^(-x)-1 , then find the value of e^(9)f(9) is equal to…………………..

ARIHANT MATHS-DEFINITE INTEGRAL-Exercise (Questions Asked In Previous 13 Years Exam)
  1. The value of x gt 1 satisfying the equation int(1)^(x) tlnt dt=(1)/(...

    Text Solution

    |

  2. The value of int(-pi//2)^(pi//2) (x^(2)cos x )/(1+e^(x)) dx is equal ...

    Text Solution

    |

  3. The total number for distinct x epsilon[0,1] for which int(0)^(x)(t^(2...

    Text Solution

    |

  4. Let f(x)=7 tan^(8) x +7 tan^(6) x-3 tan^(4) x-3 tan^(2)x for all x in...

    Text Solution

    |

  5. Let f prime(x)=(192x^3)/(2+sin^4 pix) for all x in RR with f(1/2)=0. I...

    Text Solution

    |

  6. The option(s) with the values of aa n dL that satisfy the following eq...

    Text Solution

    |

  7. Let F:R- R be a thrice differentiable function. Suppose that F(1)=0,F(...

    Text Solution

    |

  8. Let F : R to R be a thrice differentiable function . Suppose that F(...

    Text Solution

    |

  9. Let f: RvecR be a function defined by f(x)={[x],xlt=2 0,x >2 where [...

    Text Solution

    |

  10. If alpha=int0^1(e^9x+3tan^((-1)x))((12+9x^2)/(1+x^2))dxw h e r etan^(-...

    Text Solution

    |

  11. The integral overset(pi//2)underset(pi//4)int (2 cosecx)^(17)dx is equ...

    Text Solution

    |

  12. Let f:[0,2]vecR be a function which is continuous on [0,2] and is diff...

    Text Solution

    |

  13. Match the conditions/ expressions in Column I with statement in Column...

    Text Solution

    |

  14. Match List I with List II and select the correct answer using codes gi...

    Text Solution

    |

  15. The value of int0^1 4x^3{(d^2)/(dx^2)(1-x^2)^5}dxi s

    Text Solution

    |

  16. The value of the integral int(-pi//2)^(pi//2) (x^(2) + log" (pi-x)/(pi...

    Text Solution

    |

  17. The value of int(sqrt(ln2))^(sqrt(ln3)) (xsinx^2)/(sinx^2+sin(ln6-x^2)...

    Text Solution

    |

  18. Let f:[1,oo] be a differentiable function such that f(1)=2. If int1...

    Text Solution

    |

  19. The value of int(0)^(1) (x^(4)(1-x)^(4))/(1+x^(2)) dx is (are)

    Text Solution

    |

  20. For a in R ( the set of all real number) , a ne -1, lim(n to oo)((1^...

    Text Solution

    |

  21. Consider the statements : P : There exists some x IR such that f(x)...

    Text Solution

    |