Home
Class 12
MATHS
Evaluate int(pi//6)^(pi//3) (d x )/(1+sq...

Evaluate `int_(pi//6)^(pi//3) (d x )/(1+sqrt(tan x))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{dx}{1 + \sqrt{\tan x}}, \] we can use the property of definite integrals that states: \[ \int_a^b f(x) \, dx = \int_a^b f(a + b - x) \, dx. \] ### Step 1: Identify the limits and the function Here, \( a = \frac{\pi}{6} \) and \( b = \frac{\pi}{3} \). Thus, \( a + b = \frac{\pi}{6} + \frac{\pi}{3} = \frac{\pi}{6} + \frac{2\pi}{6} = \frac{3\pi}{6} = \frac{\pi}{2} \). ### Step 2: Substitute into the integral Using the property mentioned, we can rewrite the integral: \[ I = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{dx}{1 + \sqrt{\tan x}} = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{dx}{1 + \sqrt{\tan\left(\frac{\pi}{2} - x\right)}}. \] ### Step 3: Simplify the function Using the identity \( \tan\left(\frac{\pi}{2} - x\right) = \cot x \), we have: \[ I = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{dx}{1 + \sqrt{\cot x}}. \] ### Step 4: Rewrite \(\sqrt{\cot x}\) We know that \( \cot x = \frac{1}{\tan x} \), so: \[ \sqrt{\cot x} = \frac{1}{\sqrt{\tan x}}. \] Thus, we can rewrite the integral: \[ I = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{dx}{1 + \frac{1}{\sqrt{\tan x}}} = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sqrt{\tan x}}{\sqrt{\tan x} + 1} \, dx. \] ### Step 5: Combine the two integrals Now we have two expressions for \( I \): 1. \( I = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{dx}{1 + \sqrt{\tan x}} \) 2. \( I = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sqrt{\tan x}}{\sqrt{\tan x} + 1} \, dx \) Adding these two expressions gives: \[ 2I = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \left( \frac{1}{1 + \sqrt{\tan x}} + \frac{\sqrt{\tan x}}{\sqrt{\tan x} + 1} \right) dx. \] ### Step 6: Simplify the combined integral The combined expression simplifies to: \[ \frac{1 + \sqrt{\tan x}}{1 + \sqrt{\tan x}} = 1. \] Thus, we have: \[ 2I = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} 1 \, dx = \left[ x \right]_{\frac{\pi}{6}}^{\frac{\pi}{3}} = \frac{\pi}{3} - \frac{\pi}{6} = \frac{\pi}{6}. \] ### Step 7: Solve for \( I \) Dividing both sides by 2 gives: \[ I = \frac{\pi}{6} \cdot \frac{1}{2} = \frac{\pi}{12}. \] ### Final Answer Thus, the value of the integral is: \[ \boxed{\frac{\pi}{12}}. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 1|15 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 2|14 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

Evaluate int_((pi)/(6))^((pi)/(3))(dx)/(1+sqrt(tan x))

Evaluate int_(pi//6)^(pi//3)(dx)/(1+tan^(n)x)

Evaluate: int_((pi)/(6))^((pi)/(3))(dx)/(1+sqrt(tan x))

Evaluate (i) int_(0)^(pi//2)(d x)/(1+sqrt(tan x)) (ii) int_(0)^(pi//2) log (tan x ) d x (iii) int_(0)^(pi//4) log (1+tan x ) d x (iv) int_(0)^(pi//2)(sin x- cos x)/(1+ sin x cos x)d x

Statement I The value of the integral int_(pi//6)^(pi//3) (dx)/(1+sqrt(tan x)) is pi/6 Statement II int_(a)^(b) f(x) dx = int_(a)^(b) f(a+b-x)dx

int_(pi/6)^(pi/3) (sin x+ cos x)/(sqrt(sin 2x))dx

The value of the integral int_(pi//6)^(pi//3) (1)/(1+sqrt(tan x))dx is

Evaluate :int_((pi)/(6))^(3)(dx)/(1+sqrt(cot x))

Evaluate :int_(0)^((pi)/(2))(dx)/(1+sqrt(tan x))

ARIHANT MATHS-DEFINITE INTEGRAL-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Evaluate int(pi//6)^(pi//3) (d x )/(1+sqrt(tan x))

    Text Solution

    |

  2. The value of int(-pi//2)^(pi//2) (x^(2)cos x )/(1+e^(x)) dx is equal ...

    Text Solution

    |

  3. The total number for distinct x epsilon[0,1] for which int(0)^(x)(t^(2...

    Text Solution

    |

  4. Let f(x)=7 tan^(8) x +7 tan^(6) x-3 tan^(4) x-3 tan^(2)x for all x in...

    Text Solution

    |

  5. Let f prime(x)=(192x^3)/(2+sin^4 pix) for all x in RR with f(1/2)=0. I...

    Text Solution

    |

  6. The option(s) with the values of aa n dL that satisfy the following eq...

    Text Solution

    |

  7. Let F:R- R be a thrice differentiable function. Suppose that F(1)=0,F(...

    Text Solution

    |

  8. Let F : R to R be a thrice differentiable function . Suppose that F(...

    Text Solution

    |

  9. Let f: RvecR be a function defined by f(x)={[x],xlt=2 0,x >2 where [...

    Text Solution

    |

  10. If alpha=int0^1(e^9x+3tan^((-1)x))((12+9x^2)/(1+x^2))dxw h e r etan^(-...

    Text Solution

    |

  11. The integral overset(pi//2)underset(pi//4)int (2 cosecx)^(17)dx is equ...

    Text Solution

    |

  12. Let f:[0,2]vecR be a function which is continuous on [0,2] and is diff...

    Text Solution

    |

  13. Match the conditions/ expressions in Column I with statement in Column...

    Text Solution

    |

  14. Match List I with List II and select the correct answer using codes gi...

    Text Solution

    |

  15. The value of int0^1 4x^3{(d^2)/(dx^2)(1-x^2)^5}dxi s

    Text Solution

    |

  16. The value of the integral int(-pi//2)^(pi//2) (x^(2) + log" (pi-x)/(pi...

    Text Solution

    |

  17. The value of int(sqrt(ln2))^(sqrt(ln3)) (xsinx^2)/(sinx^2+sin(ln6-x^2)...

    Text Solution

    |

  18. Let f:[1,oo] be a differentiable function such that f(1)=2. If int1...

    Text Solution

    |

  19. The value of int(0)^(1) (x^(4)(1-x)^(4))/(1+x^(2)) dx is (are)

    Text Solution

    |

  20. For a in R ( the set of all real number) , a ne -1, lim(n to oo)((1^...

    Text Solution

    |

  21. Consider the statements : P : There exists some x IR such that f(x)...

    Text Solution

    |