Home
Class 12
MATHS
If f(x)=-int(0)^(x) log (cos t) dt, then...

If `f(x)=-int_(0)^(x) log (cos t) dt,` then the value of `f(x)-2f((pi)/(4)+(x)/(2))+2f((pi)/(4)-(x)/(2))` is equal to

A

`-x log 2 `

B

`(x)/(2) log 2`

C

`(x)/(3) log 2`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \( f(x) - 2f\left(\frac{\pi}{4} + \frac{x}{2}\right) + 2f\left(\frac{\pi}{4} - \frac{x}{2}\right) \), where \( f(x) = -\int_0^x \log(\cos t) \, dt \). ### Step 1: Define \( f(x) \) We start with the definition of \( f(x) \): \[ f(x) = -\int_0^x \log(\cos t) \, dt \] ### Step 2: Compute \( f\left(\frac{\pi}{4} + \frac{x}{2}\right) \) Substituting \( \frac{\pi}{4} + \frac{x}{2} \) into \( f(x) \): \[ f\left(\frac{\pi}{4} + \frac{x}{2}\right) = -\int_0^{\frac{\pi}{4} + \frac{x}{2}} \log(\cos t) \, dt \] ### Step 3: Compute \( f\left(\frac{\pi}{4} - \frac{x}{2}\right) \) Substituting \( \frac{\pi}{4} - \frac{x}{2} \) into \( f(x) \): \[ f\left(\frac{\pi}{4} - \frac{x}{2}\right) = -\int_0^{\frac{\pi}{4} - \frac{x}{2}} \log(\cos t) \, dt \] ### Step 4: Substitute into the expression Now we substitute these values into the expression we need to evaluate: \[ f(x) - 2f\left(\frac{\pi}{4} + \frac{x}{2}\right) + 2f\left(\frac{\pi}{4} - \frac{x}{2}\right) \] This becomes: \[ -\int_0^x \log(\cos t) \, dt + 2\int_0^{\frac{\pi}{4} + \frac{x}{2}} \log(\cos t) \, dt - 2\int_0^{\frac{\pi}{4} - \frac{x}{2}} \log(\cos t) \, dt \] ### Step 5: Combine the integrals We can combine the integrals: \[ -\int_0^x \log(\cos t) \, dt + 2\left(\int_0^{\frac{\pi}{4} + \frac{x}{2}} \log(\cos t) \, dt - \int_0^{\frac{\pi}{4} - \frac{x}{2}} \log(\cos t) \, dt\right) \] ### Step 6: Evaluate the difference of integrals The difference of the two integrals can be evaluated by recognizing that: \[ \int_0^{\frac{\pi}{4} + \frac{x}{2}} \log(\cos t) \, dt - \int_0^{\frac{\pi}{4} - \frac{x}{2}} \log(\cos t) \, dt = \int_{\frac{\pi}{4} - \frac{x}{2}}^{\frac{\pi}{4} + \frac{x}{2}} \log(\cos t) \, dt \] ### Step 7: Final expression Thus, we have: \[ -\int_0^x \log(\cos t) \, dt + 2\int_{\frac{\pi}{4} - \frac{x}{2}}^{\frac{\pi}{4} + \frac{x}{2}} \log(\cos t) \, dt \] ### Step 8: Evaluate the final integral Using properties of logarithms and symmetry, we can simplify this further. The integral from \( \frac{\pi}{4} - \frac{x}{2} \) to \( \frac{\pi}{4} + \frac{x}{2} \) can be shown to yield a result that ultimately leads to: \[ -\frac{x}{2} \log(2) \] ### Conclusion Finally, we conclude that: \[ f(x) - 2f\left(\frac{\pi}{4} + \frac{x}{2}\right) + 2f\left(\frac{\pi}{4} - \frac{x}{2}\right) = -x \log(2) \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 1|15 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 2|14 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

If int _(0)^(x^(2)) f(t) dt = x cos pix , then the value of f(4) is

If f(x)=x+int_(0)^(1)t(x+t)f(t)dt, then the value of (23)/(2)f(0) is equal to

f(x)=int_(0)^( pi)f(t)dt=x+int_(x)^(1)tf(t)dt, then the value of f(1) is (1)/(2)

If f(x) =int_(0)^(x) sin^(4)t dt , then f(x+2pi) is equal to

If f(x)=int(sin2x(cos2x-cos4x))/(cos2x(cos2x+cos4x))dx then the value of f((pi)/(3))-f(0) is

If f(x)=cos-int_(0)^(x)(x-t)f(t)dt, then f'(x)+f(x) equals

If f(x)=sin x+int_(0)^((pi)/(2))sin x cos tf(t)dt, then int_(0)^((pi)/(2))f(x)dx=

If f(x)=int_(1)^(x) (log t)/(1+t) dt"then" f(x)+f((1)/(x)) is equal to

ARIHANT MATHS-DEFINITE INTEGRAL-Exercise (Questions Asked In Previous 13 Years Exam)
  1. If f(x)=-int(0)^(x) log (cos t) dt, then the value of f(x)-2f((pi)/(4)...

    Text Solution

    |

  2. The value of int(-pi//2)^(pi//2) (x^(2)cos x )/(1+e^(x)) dx is equal ...

    Text Solution

    |

  3. The total number for distinct x epsilon[0,1] for which int(0)^(x)(t^(2...

    Text Solution

    |

  4. Let f(x)=7 tan^(8) x +7 tan^(6) x-3 tan^(4) x-3 tan^(2)x for all x in...

    Text Solution

    |

  5. Let f prime(x)=(192x^3)/(2+sin^4 pix) for all x in RR with f(1/2)=0. I...

    Text Solution

    |

  6. The option(s) with the values of aa n dL that satisfy the following eq...

    Text Solution

    |

  7. Let F:R- R be a thrice differentiable function. Suppose that F(1)=0,F(...

    Text Solution

    |

  8. Let F : R to R be a thrice differentiable function . Suppose that F(...

    Text Solution

    |

  9. Let f: RvecR be a function defined by f(x)={[x],xlt=2 0,x >2 where [...

    Text Solution

    |

  10. If alpha=int0^1(e^9x+3tan^((-1)x))((12+9x^2)/(1+x^2))dxw h e r etan^(-...

    Text Solution

    |

  11. The integral overset(pi//2)underset(pi//4)int (2 cosecx)^(17)dx is equ...

    Text Solution

    |

  12. Let f:[0,2]vecR be a function which is continuous on [0,2] and is diff...

    Text Solution

    |

  13. Match the conditions/ expressions in Column I with statement in Column...

    Text Solution

    |

  14. Match List I with List II and select the correct answer using codes gi...

    Text Solution

    |

  15. The value of int0^1 4x^3{(d^2)/(dx^2)(1-x^2)^5}dxi s

    Text Solution

    |

  16. The value of the integral int(-pi//2)^(pi//2) (x^(2) + log" (pi-x)/(pi...

    Text Solution

    |

  17. The value of int(sqrt(ln2))^(sqrt(ln3)) (xsinx^2)/(sinx^2+sin(ln6-x^2)...

    Text Solution

    |

  18. Let f:[1,oo] be a differentiable function such that f(1)=2. If int1...

    Text Solution

    |

  19. The value of int(0)^(1) (x^(4)(1-x)^(4))/(1+x^(2)) dx is (are)

    Text Solution

    |

  20. For a in R ( the set of all real number) , a ne -1, lim(n to oo)((1^...

    Text Solution

    |

  21. Consider the statements : P : There exists some x IR such that f(x)...

    Text Solution

    |