Home
Class 12
MATHS
If int(0)^(pi)((x)/(1+sinx))^(2) dx=A, t...

If `int_(0)^(pi)((x)/(1+sinx))^(2) dx=A,` then the value for `int_(0)^(pi)(2x^(2). cos^(2)x//2)/((1+ sin x^(2)))dx` is equal to

A

`A+2pi-pi^(2)`

B

`A-2pi+pi^(2)`

C

`2pi-A-pi^(2)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem step by step, we will evaluate the integral \( I = \int_{0}^{\pi} \frac{2x^2 \cos^2 \frac{x}{2}}{(1 + \sin x)^2} \, dx \) based on the information provided about \( A = \int_{0}^{\pi} \frac{x}{(1 + \sin x)^2} \, dx \). ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int_{0}^{\pi} \frac{2x^2 \cos^2 \frac{x}{2}}{(1 + \sin x)^2} \, dx \] Using the half-angle identity, we can express \( \cos^2 \frac{x}{2} \) in terms of \( \sin x \): \[ \cos^2 \frac{x}{2} = \frac{1 + \cos x}{2} \] Thus, \[ I = \int_{0}^{\pi} \frac{2x^2 \cdot \frac{1 + \cos x}{2}}{(1 + \sin x)^2} \, dx = \int_{0}^{\pi} \frac{x^2 (1 + \cos x)}{(1 + \sin x)^2} \, dx \] ### Step 2: Split the Integral We can split the integral into two parts: \[ I = \int_{0}^{\pi} \frac{x^2}{(1 + \sin x)^2} \, dx + \int_{0}^{\pi} \frac{x^2 \cos x}{(1 + \sin x)^2} \, dx \] Let \( I_1 = \int_{0}^{\pi} \frac{x^2}{(1 + \sin x)^2} \, dx \) and \( I_2 = \int_{0}^{\pi} \frac{x^2 \cos x}{(1 + \sin x)^2} \, dx \). ### Step 3: Evaluate \( I_1 \) From the problem statement, we know: \[ I_1 = A \] ### Step 4: Evaluate \( I_2 \) To evaluate \( I_2 \), we can use the property of definite integrals: \[ \int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a + b - x) \, dx \] For \( I_2 \): \[ I_2 = \int_{0}^{\pi} \frac{(\pi - x)^2 \cos(\pi - x)}{(1 + \sin(\pi - x))^2} \, dx \] Using the identities \( \cos(\pi - x) = -\cos x \) and \( \sin(\pi - x) = \sin x \): \[ I_2 = \int_{0}^{\pi} \frac{(\pi - x)^2 (-\cos x)}{(1 + \sin x)^2} \, dx = -\int_{0}^{\pi} \frac{(\pi - x)^2 \cos x}{(1 + \sin x)^2} \, dx \] ### Step 5: Combine the Integrals Now we can combine \( I_2 \) with \( I_1 \): \[ 2I_2 = I_2 + (-I_2) = \int_{0}^{\pi} \frac{x^2 \cos x}{(1 + \sin x)^2} \, dx - \int_{0}^{\pi} \frac{(\pi - x)^2 \cos x}{(1 + \sin x)^2} \, dx \] This simplifies to: \[ 2I_2 = -\pi^2 \int_{0}^{\pi} \frac{\cos x}{(1 + \sin x)^2} \, dx \] ### Step 6: Final Calculation Putting everything together: \[ I = A + I_2 \] Substituting the values we have: \[ I = A + \left(-\frac{\pi^2}{2} + 2\pi\right) \] ### Conclusion Thus, the final value of the integral is: \[ I = A + 2\pi - \pi^2 \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 1|15 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 2|14 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi) x sin x cos^(2)x\ dx

int_(0)^(pi) x sin x. cos^(2) x dx

int_(0)^( pi)(sin x)/(1+cos^(2)x)dx =

int_(0)^(pi/2)(sin^(2)x*cos x)dx=

If int_(0)^((pi)/(2))(dx)/(1+sin x+cos x)=In2, then the value of int_(0)^((pi)/(2))(sin x)/(1+sin x+cos x)dx is equal to:

int_(0)^( pi/2)(sin x)/(1+cos x)dx

int_(0)^( pi/4)(x^(2)(sin2x-cos2x))/((1+sin2x)cos^(2)x)dx

int_(0)^((pi)/(2))(x)/(sin x+cos x)dx

ARIHANT MATHS-DEFINITE INTEGRAL-Exercise (Questions Asked In Previous 13 Years Exam)
  1. If int(0)^(pi)((x)/(1+sinx))^(2) dx=A, then the value for int(0)^(pi)(...

    Text Solution

    |

  2. The value of int(-pi//2)^(pi//2) (x^(2)cos x )/(1+e^(x)) dx is equal ...

    Text Solution

    |

  3. The total number for distinct x epsilon[0,1] for which int(0)^(x)(t^(2...

    Text Solution

    |

  4. Let f(x)=7 tan^(8) x +7 tan^(6) x-3 tan^(4) x-3 tan^(2)x for all x in...

    Text Solution

    |

  5. Let f prime(x)=(192x^3)/(2+sin^4 pix) for all x in RR with f(1/2)=0. I...

    Text Solution

    |

  6. The option(s) with the values of aa n dL that satisfy the following eq...

    Text Solution

    |

  7. Let F:R- R be a thrice differentiable function. Suppose that F(1)=0,F(...

    Text Solution

    |

  8. Let F : R to R be a thrice differentiable function . Suppose that F(...

    Text Solution

    |

  9. Let f: RvecR be a function defined by f(x)={[x],xlt=2 0,x >2 where [...

    Text Solution

    |

  10. If alpha=int0^1(e^9x+3tan^((-1)x))((12+9x^2)/(1+x^2))dxw h e r etan^(-...

    Text Solution

    |

  11. The integral overset(pi//2)underset(pi//4)int (2 cosecx)^(17)dx is equ...

    Text Solution

    |

  12. Let f:[0,2]vecR be a function which is continuous on [0,2] and is diff...

    Text Solution

    |

  13. Match the conditions/ expressions in Column I with statement in Column...

    Text Solution

    |

  14. Match List I with List II and select the correct answer using codes gi...

    Text Solution

    |

  15. The value of int0^1 4x^3{(d^2)/(dx^2)(1-x^2)^5}dxi s

    Text Solution

    |

  16. The value of the integral int(-pi//2)^(pi//2) (x^(2) + log" (pi-x)/(pi...

    Text Solution

    |

  17. The value of int(sqrt(ln2))^(sqrt(ln3)) (xsinx^2)/(sinx^2+sin(ln6-x^2)...

    Text Solution

    |

  18. Let f:[1,oo] be a differentiable function such that f(1)=2. If int1...

    Text Solution

    |

  19. The value of int(0)^(1) (x^(4)(1-x)^(4))/(1+x^(2)) dx is (are)

    Text Solution

    |

  20. For a in R ( the set of all real number) , a ne -1, lim(n to oo)((1^...

    Text Solution

    |

  21. Consider the statements : P : There exists some x IR such that f(x)...

    Text Solution

    |