Home
Class 12
MATHS
Evaluate the following (i) lim(n to o...

Evaluate the following
(i) `lim_(n to oo)((1)/(n^(2))+(2)/(n^(2))+(3)/(n^(2))....+(n-1)/(n^(2)))`
(ii) `lim_(n to oo)((1)/(n+1)+(1)/(n+2)+....+(1)/(2n))`
(iii) `lim_(n to oo)((n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2))+....+(n)/(2n^(2)))`
(iv) `lim_(n to oo)((1^(p)+2^(p)+.....+n^(p)))/(n^(p+1)),pgt0`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the given limits, we will follow a systematic approach for each part. ### (i) Evaluate \[ \lim_{n \to \infty} \left( \frac{1}{n^2} + \frac{2}{n^2} + \frac{3}{n^2} + \ldots + \frac{n-1}{n^2} \right) \] **Step 1: Rewrite the sum** We can express the sum as: \[ \sum_{r=1}^{n-1} \frac{r}{n^2} \] **Step 2: Factor out \(\frac{1}{n^2}\)** This gives us: \[ \frac{1}{n^2} \sum_{r=1}^{n-1} r \] **Step 3: Use the formula for the sum of the first \(n-1\) integers** The formula for the sum of the first \(k\) integers is \(\frac{k(k+1)}{2}\). Thus, \[ \sum_{r=1}^{n-1} r = \frac{(n-1)n}{2} \] **Step 4: Substitute back into the limit** Now substituting this back, we have: \[ \frac{1}{n^2} \cdot \frac{(n-1)n}{2} = \frac{(n-1)}{2n} \] **Step 5: Take the limit as \(n\) approaches infinity** \[ \lim_{n \to \infty} \frac{(n-1)}{2n} = \lim_{n \to \infty} \frac{1 - \frac{1}{n}}{2} = \frac{1}{2} \] ### Final Answer for (i): \[ \frac{1}{2} \] --- ### (ii) Evaluate \[ \lim_{n \to \infty} \left( \frac{1}{n+1} + \frac{1}{n+2} + \ldots + \frac{1}{2n} \right) \] **Step 1: Rewrite the sum** This can be expressed as: \[ \sum_{r=1}^{n} \frac{1}{n+r} \] **Step 2: Factor out \(\frac{1}{n}\)** This gives us: \[ \frac{1}{n} \sum_{r=1}^{n} \frac{1}{1 + \frac{r}{n}} \] **Step 3: Recognize it as a Riemann sum** As \(n\) approaches infinity, this sum approaches the integral: \[ \int_0^1 \frac{1}{1+x} \, dx \] **Step 4: Evaluate the integral** The integral can be computed as: \[ \int_0^1 \frac{1}{1+x} \, dx = \ln(1+x) \bigg|_0^1 = \ln(2) - \ln(1) = \ln(2) \] ### Final Answer for (ii): \[ \ln(2) \] --- ### (iii) Evaluate \[ \lim_{n \to \infty} \left( \frac{n}{n^2 + 1^2} + \frac{n}{n^2 + 2^2} + \ldots + \frac{n}{n^2 + (2n)^2} \right) \] **Step 1: Rewrite the sum** This can be expressed as: \[ \sum_{r=1}^{2n} \frac{n}{n^2 + r^2} \] **Step 2: Factor out \(\frac{1}{n}\)** This gives us: \[ \sum_{r=1}^{2n} \frac{1}{1 + \left(\frac{r}{n}\right)^2} \] **Step 3: Recognize it as a Riemann sum** As \(n\) approaches infinity, this sum approaches the integral: \[ \int_0^2 \frac{1}{1+x^2} \, dx \] **Step 4: Evaluate the integral** The integral can be computed as: \[ \int_0^2 \frac{1}{1+x^2} \, dx = \tan^{-1}(x) \bigg|_0^2 = \tan^{-1}(2) - \tan^{-1}(0) = \tan^{-1}(2) \] ### Final Answer for (iii): \[ \tan^{-1}(2) \] --- ### (iv) Evaluate \[ \lim_{n \to \infty} \frac{1^p + 2^p + \ldots + n^p}{n^{p+1}}, \quad p > 0 \] **Step 1: Rewrite the sum** This can be expressed as: \[ \frac{1}{n^{p+1}} \sum_{r=1}^{n} r^p \] **Step 2: Use the formula for the sum of powers** The formula for the sum of the first \(n\) powers is approximately \(\frac{n^{p+1}}{p+1}\) for large \(n\). Thus, \[ \sum_{r=1}^{n} r^p \sim \frac{n^{p+1}}{p+1} \] **Step 3: Substitute back into the limit** Now substituting this back, we have: \[ \frac{1}{n^{p+1}} \cdot \frac{n^{p+1}}{p+1} = \frac{1}{p+1} \] ### Final Answer for (iv): \[ \frac{1}{p+1} \] ---
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 1|15 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 2|14 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

lim_(n rarr oo)((1)/(n^(2))+(2)/(n^(2))+(3)/(n^(2))+...+(n)/(n^(2)))

lim_(n to oo)[(n+1)/(n^(2)+1^(2))+(n+2)/(n^(2)+2^(2))+....+(1)/(n)]

lim_(n to oo ) {(n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2))+....+ (n)/(n^(2)+n^(2))} is equal to

lim_(n rarr oo)[(1)/(n^(2))+(2)/(n^(2))+....+(n)/(n^(2))]

lim_(n to oo)[(n)/(1+n^(2))+(n)/(4+n^(2))+(n)/(9+n^(2))+…+(1)/(2n^2)]=

lim_(n to oo) [ 1/(n^2) + 2/(n^2) + … + n/(n^2)]

lim_(n rarr oo)[(1)/(n)+(1)/(n+1)+(1)/(n+2)+.....+(1)/(2n)]

lim_ (n rarr oo) ((1) / (n ^ (2)) + (2) / (n ^ (2)) + (3) / (n ^ (2)) ++ (n-1) / (n ^ (2)))

The value of lim_(n rarr oo)[(n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2))++(1)/(2n)] is

lim_ (n rarr oo) ((1) / (n + 1) + (1) / (n + 2) ++ (1) / (2n))

ARIHANT MATHS-DEFINITE INTEGRAL-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Evaluate the following (i) lim(n to oo)((1)/(n^(2))+(2)/(n^(2))+(3)...

    Text Solution

    |

  2. The value of int(-pi//2)^(pi//2) (x^(2)cos x )/(1+e^(x)) dx is equal ...

    Text Solution

    |

  3. The total number for distinct x epsilon[0,1] for which int(0)^(x)(t^(2...

    Text Solution

    |

  4. Let f(x)=7 tan^(8) x +7 tan^(6) x-3 tan^(4) x-3 tan^(2)x for all x in...

    Text Solution

    |

  5. Let f prime(x)=(192x^3)/(2+sin^4 pix) for all x in RR with f(1/2)=0. I...

    Text Solution

    |

  6. The option(s) with the values of aa n dL that satisfy the following eq...

    Text Solution

    |

  7. Let F:R- R be a thrice differentiable function. Suppose that F(1)=0,F(...

    Text Solution

    |

  8. Let F : R to R be a thrice differentiable function . Suppose that F(...

    Text Solution

    |

  9. Let f: RvecR be a function defined by f(x)={[x],xlt=2 0,x >2 where [...

    Text Solution

    |

  10. If alpha=int0^1(e^9x+3tan^((-1)x))((12+9x^2)/(1+x^2))dxw h e r etan^(-...

    Text Solution

    |

  11. The integral overset(pi//2)underset(pi//4)int (2 cosecx)^(17)dx is equ...

    Text Solution

    |

  12. Let f:[0,2]vecR be a function which is continuous on [0,2] and is diff...

    Text Solution

    |

  13. Match the conditions/ expressions in Column I with statement in Column...

    Text Solution

    |

  14. Match List I with List II and select the correct answer using codes gi...

    Text Solution

    |

  15. The value of int0^1 4x^3{(d^2)/(dx^2)(1-x^2)^5}dxi s

    Text Solution

    |

  16. The value of the integral int(-pi//2)^(pi//2) (x^(2) + log" (pi-x)/(pi...

    Text Solution

    |

  17. The value of int(sqrt(ln2))^(sqrt(ln3)) (xsinx^2)/(sinx^2+sin(ln6-x^2)...

    Text Solution

    |

  18. Let f:[1,oo] be a differentiable function such that f(1)=2. If int1...

    Text Solution

    |

  19. The value of int(0)^(1) (x^(4)(1-x)^(4))/(1+x^(2)) dx is (are)

    Text Solution

    |

  20. For a in R ( the set of all real number) , a ne -1, lim(n to oo)((1^...

    Text Solution

    |

  21. Consider the statements : P : There exists some x IR such that f(x)...

    Text Solution

    |