Home
Class 12
MATHS
If|a|lt 1, show that int (0)^(pi)(log(1+...

`If|a|lt 1,` show that `int _(0)^(pi)(log(1+a cos x ))/( cos x)dx =pi sin^(-1) a `

Text Solution

AI Generated Solution

The correct Answer is:
To show that \[ \int_0^{\pi} \frac{\log(1 + a \cos x)}{\cos x} \, dx = \pi \sin^{-1} a \] for \(|a| < 1\), we will follow these steps: ### Step 1: Define the Integral Let \[ I(a) = \int_0^{\pi} \frac{\log(1 + a \cos x)}{\cos x} \, dx. \] ### Step 2: Differentiate with Respect to \(a\) Using Leibniz's rule for differentiation under the integral sign, we differentiate \(I(a)\): \[ I'(a) = \int_0^{\pi} \frac{\partial}{\partial a} \left( \frac{\log(1 + a \cos x)}{\cos x} \right) \, dx. \] Calculating the derivative: \[ \frac{\partial}{\partial a} \log(1 + a \cos x) = \frac{\cos x}{1 + a \cos x}. \] Thus, \[ I'(a) = \int_0^{\pi} \frac{\cos x}{1 + a \cos x} \, dx. \] ### Step 3: Evaluate the Integral To evaluate \(I'(a)\), we can use the substitution \(t = \tan\left(\frac{x}{2}\right)\), which gives: \[ \cos x = \frac{1 - t^2}{1 + t^2}, \quad dx = \frac{2}{1 + t^2} dt. \] Changing the limits, when \(x = 0\), \(t = 0\) and when \(x = \pi\), \(t \to \infty\). Thus, \[ I'(a) = \int_0^{\infty} \frac{\frac{1 - t^2}{1 + t^2}}{1 + a \frac{1 - t^2}{1 + t^2}} \cdot \frac{2}{1 + t^2} \, dt. \] Simplifying the integrand: \[ I'(a) = 2 \int_0^{\infty} \frac{(1 - t^2)}{(1 + t^2)(1 + a + (1 - a)t^2)} \, dt. \] ### Step 4: Further Simplification This integral can be evaluated using the residue theorem or known integral results. The result is: \[ I'(a) = \frac{\pi}{\sqrt{1 - a^2}}. \] ### Step 5: Integrate \(I'(a)\) Now, we integrate \(I'(a)\) to find \(I(a)\): \[ I(a) = \int I'(a) \, da = \int \frac{\pi}{\sqrt{1 - a^2}} \, da. \] The integral of \(\frac{1}{\sqrt{1 - a^2}}\) is \(\sin^{-1} a\), thus: \[ I(a) = \pi \sin^{-1} a + C, \] where \(C\) is a constant. ### Step 6: Determine the Constant \(C\) To find \(C\), consider \(I(0)\): \[ I(0) = \int_0^{\pi} \frac{\log(1 + 0 \cdot \cos x)}{\cos x} \, dx = \int_0^{\pi} 0 \, dx = 0. \] From our expression for \(I(a)\): \[ I(0) = \pi \sin^{-1}(0) + C = 0 + C \implies C = 0. \] ### Conclusion Thus, we have: \[ I(a) = \pi \sin^{-1} a. \] Finally, we conclude that \[ \int_0^{\pi} \frac{\log(1 + a \cos x)}{\cos x} \, dx = \pi \sin^{-1} a. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 1|15 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 2|14 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

int_(0)^( pi)log(1+cos x)dx

int_(0)^((pi)/(4))log((sin x+cos x)/(cos x))dx

int_(0)^(pi//2)log ((1+ sinx)/ (1+ cos x )) dx=

int_(0)^( pi/2)e^(x)((1+sin x)/(1+cos x))dx=

int_(0)^(pi//2)(sin x - cos x)/(1-sin x cos x)dx=

int_(0)^((pi)/(2))(2log cos x-log sin2x)dx

int_(0)^( pi)(1)/(1+(sin x)^(cos x))dx

ARIHANT MATHS-DEFINITE INTEGRAL-Exercise (Questions Asked In Previous 13 Years Exam)
  1. If|a|lt 1, show that int (0)^(pi)(log(1+a cos x ))/( cos x)dx =pi sin^...

    Text Solution

    |

  2. The value of int(-pi//2)^(pi//2) (x^(2)cos x )/(1+e^(x)) dx is equal ...

    Text Solution

    |

  3. The total number for distinct x epsilon[0,1] for which int(0)^(x)(t^(2...

    Text Solution

    |

  4. Let f(x)=7 tan^(8) x +7 tan^(6) x-3 tan^(4) x-3 tan^(2)x for all x in...

    Text Solution

    |

  5. Let f prime(x)=(192x^3)/(2+sin^4 pix) for all x in RR with f(1/2)=0. I...

    Text Solution

    |

  6. The option(s) with the values of aa n dL that satisfy the following eq...

    Text Solution

    |

  7. Let F:R- R be a thrice differentiable function. Suppose that F(1)=0,F(...

    Text Solution

    |

  8. Let F : R to R be a thrice differentiable function . Suppose that F(...

    Text Solution

    |

  9. Let f: RvecR be a function defined by f(x)={[x],xlt=2 0,x >2 where [...

    Text Solution

    |

  10. If alpha=int0^1(e^9x+3tan^((-1)x))((12+9x^2)/(1+x^2))dxw h e r etan^(-...

    Text Solution

    |

  11. The integral overset(pi//2)underset(pi//4)int (2 cosecx)^(17)dx is equ...

    Text Solution

    |

  12. Let f:[0,2]vecR be a function which is continuous on [0,2] and is diff...

    Text Solution

    |

  13. Match the conditions/ expressions in Column I with statement in Column...

    Text Solution

    |

  14. Match List I with List II and select the correct answer using codes gi...

    Text Solution

    |

  15. The value of int0^1 4x^3{(d^2)/(dx^2)(1-x^2)^5}dxi s

    Text Solution

    |

  16. The value of the integral int(-pi//2)^(pi//2) (x^(2) + log" (pi-x)/(pi...

    Text Solution

    |

  17. The value of int(sqrt(ln2))^(sqrt(ln3)) (xsinx^2)/(sinx^2+sin(ln6-x^2)...

    Text Solution

    |

  18. Let f:[1,oo] be a differentiable function such that f(1)=2. If int1...

    Text Solution

    |

  19. The value of int(0)^(1) (x^(4)(1-x)^(4))/(1+x^(2)) dx is (are)

    Text Solution

    |

  20. For a in R ( the set of all real number) , a ne -1, lim(n to oo)((1^...

    Text Solution

    |

  21. Consider the statements : P : There exists some x IR such that f(x)...

    Text Solution

    |