Home
Class 12
MATHS
int(0)^(pi//4)(sin x + cos x)/(9+16 sin ...

`int_(0)^(pi//4)(sin x + cos x)/(9+16 sin 2 x )`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the definite integral \[ I = \int_{0}^{\frac{\pi}{4}} \frac{\sin x + \cos x}{9 + 16 \sin 2x} \, dx, \] we will follow these steps: ### Step 1: Rewrite the integrand using the double angle identity We know that \[ \sin 2x = 2 \sin x \cos x. \] Thus, we can express the integrand as: \[ I = \int_{0}^{\frac{\pi}{4}} \frac{\sin x + \cos x}{9 + 16(2 \sin x \cos x)} \, dx = \int_{0}^{\frac{\pi}{4}} \frac{\sin x + \cos x}{9 + 32 \sin x \cos x} \, dx. \] ### Step 2: Simplify the denominator We can express the denominator as: \[ 9 + 32 \sin x \cos x = 9 + 16 \cdot 2 \sin x \cos x = 9 + 16 \sin 2x. \] ### Step 3: Substitute \( t = \sin x - \cos x \) Let \( t = \sin x - \cos x \). Then, we have: \[ \sin x + \cos x = \sqrt{2} \sin\left(x + \frac{\pi}{4}\right). \] ### Step 4: Change of variable We differentiate \( t \): \[ dt = (\cos x + \sin x) \, dx. \] ### Step 5: Change the limits of integration When \( x = 0 \): \[ t = \sin(0) - \cos(0) = -1. \] When \( x = \frac{\pi}{4} \): \[ t = \sin\left(\frac{\pi}{4}\right) - \cos\left(\frac{\pi}{4}\right) = 0. \] ### Step 6: Substitute into the integral Now, we can rewrite the integral in terms of \( t \): \[ I = \int_{-1}^{0} \frac{dt}{25 - 16t^2}. \] ### Step 7: Solve the integral We can use the formula for the integral: \[ \int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right| + C. \] Here, \( a^2 = 25 \) so \( a = 5 \): \[ I = \int_{-1}^{0} \frac{dt}{25 - 16t^2} = \frac{1}{10} \left[ \ln \left| \frac{5 + 4t}{5 - 4t} \right| \right]_{-1}^{0}. \] ### Step 8: Evaluate the limits Calculating the limits: At \( t = 0 \): \[ \frac{5 + 4(0)}{5 - 4(0)} = \frac{5}{5} = 1 \implies \ln(1) = 0. \] At \( t = -1 \): \[ \frac{5 + 4(-1)}{5 - 4(-1)} = \frac{5 - 4}{5 + 4} = \frac{1}{9} \implies \ln\left(\frac{1}{9}\right) = -\ln(9). \] ### Final Calculation Thus, we have: \[ I = \frac{1}{10} \left[ 0 - (-\ln(9)) \right] = \frac{1}{10} \ln(9) = \frac{1}{10} \cdot 2 \ln(3) = \frac{1}{5} \ln(3). \] ### Conclusion The final result is: \[ I = \frac{1}{5} \ln(3). \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 2|14 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 3|20 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|38 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

int_(0)^( pi/4)(sin x-cos x)dx

int_(0)^(pi/4)(sin x+cos x)/(9+16 sin 2x)dx

Compute the integrals I = int_(0)^(pi//4) (sin x + cos x)/( 3 + sin 2 x) dx

int_(0)^((pi)/(4))(sin x+cos x)/(9+16sin2x)dx

Evaluate: int_(0)^((pi)/(4))(sin x+cos x)/(9+16sin2x)dx

Evaluate the definite integrals int_(0)^((pi)/(4))(sin x+cos x)/(9+16sin2x)dx

Evaluate :(int_(0)^( pi))/(4)(sin x+cos x)/(16+9sin2x)