Home
Class 12
MATHS
int0^(pi/4)sqrt(tanx)dx...

`int_0^(pi/4)sqrt(tanx)dx`

Text Solution

Verified by Experts

The correct Answer is:
`(pi)(2sqrt2)+(1)/(sqrt2)log`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 2|14 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 3|20 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|38 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

The value of int_0^(pi//4) sqrt(tan x dx) +int_0^(pi//4) sqrt(cot x dx) is equal to

int_(0)^(pi//4)(sqrt(tanx)+sqrt(cotx))dx equals

If int_(0)^(pi//4)[sqrt(tanx)+sqrt(cotx)]dx=(pi)/(sqrtm), then the value of m is equal to

The value of the integral int_(0)^((pi)/4)(sqrt(tanx))/(sinx cos x) dx equals

Evaluate the following integral: int_0^(pi//4)(sqrt(t a n x)+sqrt(cotx))dx

int_0^(pi//2)log(tanx)dx

Prove that : int_(0)^(pi//2) (sqrt(tanx))/(sqrt(tanx +sqrt(cotx)))dx=(pi)/(4)

Evaluate the following: int_0^(pi/2) sqrt(tanx)/(1+sqrt(tanx))dx