Home
Class 12
MATHS
Let f(x) = sin^(-1)((2x)/(1+x^(2)))State...

Let `f(x) = sin^(-1)((2x)/(1+x^(2)))`Statement I `f'(2) = - 2/5 ` and
Statement II `sin^(-1)((2x)/(1 +x^(2))) = pi - 2 tan^(-1) x, AA x gt 1`

A

Statement I is True, Statement II is True, Statement II is a correct explanation for statement I

B

Statement I is True, Statement II is True, Statement II is NOT a correct explanation for Statement I

C

Statement I is True, Statement II is False

D

Statement I is False, Statement II is True.

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Single Integer Answer Type Questions)|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Subjective Type Questions)|9 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Passage Based Questions)|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS|Exercise Exercise For Session 6|4 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=sin^(-1)((2x)/(1+x^(2))) the value of f'(2) is

Let f(x) = tan^(-1)(((x-2))/(x^(2)+2x+2)) ,then 26 f'(1) is

If f(x)=sin^(-1)((2x)/(1+x^(2))), then Statement I The value of f(2)=sin^(-1)((4)/(5)) . Statement II f(x)=sin^(-1)((2x)/(1+x^(2)))=-2, for xlt1

Let f(x) = 2 tan^(-1)x + "sin"^(-1) (2x)/(1 + x^(2)) then

Let f(x)=sin^(-1)((1)/(|x^(2)-1|))+cos^(-1)((1-2|x|)/(3))

Iff(x)=2tan^(-1)x+sin^(-1)((2x)/(1+x^(2))),x>. The n,f(5) is equal to

Given that , tan^(-1) ((2x)/(1-x^(2))) = {{:(2 tan^(-1) x"," |x| le 1),(-pi +2 tan^(-1)x","x gt 1),(pi+2 tan^(-1)x"," x lt -1):} sin^(-1)((2x)/(1+x^(2))) ={{:(2 tan^(-1)x","|x|le1),(pi -2 tan^(-1)x","x gt 1 and ),(-(pi+2tan^(-1))","x lt -1):} sin^(-1) x + cos^(-1) x = pi//2 " for " - 1 le x le 1 If cos^(-1). (6x)/(1 + 9x^(2)) = - pi/2 + 2 tan^(-1) 3x" , then " x in

If sin^(-1)x+tan^(-1)((1)/(2))=(pi)/(2) then x=