Home
Class 12
MATHS
If x^(2)+y^(2)=4, then maximum value of ...

If `x^(2)+y^(2)=4`, then maximum value of `((x^(3)+y^(3))/(x+y))` is

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum value of \(\frac{x^3 + y^3}{x + y}\) given that \(x^2 + y^2 = 4\), we can follow these steps: ### Step 1: Rewrite \(x^3 + y^3\) Using the identity for the sum of cubes, we have: \[ x^3 + y^3 = (x + y)(x^2 - xy + y^2) \] Thus, \[ \frac{x^3 + y^3}{x + y} = x^2 - xy + y^2 \] ### Step 2: Substitute \(x^2 + y^2\) From the given condition \(x^2 + y^2 = 4\), we can substitute this into our expression: \[ x^2 - xy + y^2 = (x^2 + y^2) - xy = 4 - xy \] ### Step 3: Express \(xy\) in terms of \(x^2 + y^2\) We know from the identity: \[ (x + y)^2 = x^2 + y^2 + 2xy \] Let \(s = x + y\) and \(p = xy\). Then we can express \(p\) as: \[ p = \frac{s^2 - 4}{2} \] Substituting this into our expression gives: \[ 4 - xy = 4 - p = 4 - \frac{s^2 - 4}{2} = 4 - \frac{s^2}{2} + 2 = 6 - \frac{s^2}{2} \] ### Step 4: Maximize the expression To maximize \(6 - \frac{s^2}{2}\), we need to find the maximum value of \(s^2\). From the condition \(x^2 + y^2 = 4\), we also know: \[ s^2 = (x + y)^2 = x^2 + y^2 + 2xy \leq 4 + 2xy \] Since \(x^2 + y^2 = 4\), we can also express \(xy\) in terms of \(s\): \[ xy = \frac{s^2 - 4}{2} \] To find the maximum value of \(s\), we consider the maximum value of \(xy\) which occurs when \(x\) and \(y\) are equal. Thus, the maximum occurs when \(x = y\). ### Step 5: Solve for \(x\) and \(y\) Let \(x = y\). Then: \[ 2x^2 = 4 \implies x^2 = 2 \implies x = \sqrt{2}, y = \sqrt{2} \] Thus, \(s = x + y = 2\sqrt{2}\). ### Step 6: Substitute back to find the maximum value Now substituting \(s = 2\sqrt{2}\) back into our expression: \[ 6 - \frac{s^2}{2} = 6 - \frac{(2\sqrt{2})^2}{2} = 6 - \frac{8}{2} = 6 - 4 = 2 \] ### Conclusion The maximum value of \(\frac{x^3 + y^3}{x + y}\) is: \[ \boxed{6} \]

To find the maximum value of \(\frac{x^3 + y^3}{x + y}\) given that \(x^2 + y^2 = 4\), we can follow these steps: ### Step 1: Rewrite \(x^3 + y^3\) Using the identity for the sum of cubes, we have: \[ x^3 + y^3 = (x + y)(x^2 - xy + y^2) \] Thus, ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE|Exercise PART : 1MATHEMATICS SEC - 1|1 Videos
  • TEST PAPERS

    RESONANCE|Exercise PART : 1MATHEMATICS|9 Videos
  • TEST PAPER

    RESONANCE|Exercise CHEMISTRY|37 Videos
  • TEST SERIES

    RESONANCE|Exercise MATHEMATICS|131 Videos

Similar Questions

Explore conceptually related problems

If x^(2)+y^(2)=4 then find the maximum value of (x^(3)+y^(3))/(x+y)

If 4x^(2)+y^(2)=1 then the maximum value of 12x^(2)-3y^(2)+16xy is

If x+y=28 , then the maximum value of x^(3)y^(4) is

If real numbers x and y satisfy (x+5)^(2)+(y-12)^(2)=196 , then the maximum value of (x^(2)+y^(2))^((1)/(3)) is

If (x,y) lies on the ellipse x^(2)+2y^(3) = 2 , then maximum value of x^(2)+y^(2)+ sqrt(2)xy - 1 is

If y=x^(3)-3x . Find the maximum value of y.

If x^(2)+y^(2)+z^(2)=1 then the maximum value of x+2y+3z is

If 2x+y=5 then the maximum value of x^(2)+3xy+y^(2) is

If x,y are real and (x-1)^(2)+(y-4)^(2)=0 then the value of x^(3)+y^(3) is

If x^(2)+y^(2)=4 then sum of maximum and minimum values of 3x+4y is equal to

RESONANCE-TEST PAPERS-MATHEMATICS
  1. If x^(2)+y^(2)=4, then maximum value of ((x^(3)+y^(3))/(x+y)) is

    Text Solution

    |

  2. The least positive integral value of 'k' for which there exists at lea...

    Text Solution

    |

  3. The locus of the midpoint of a chord of the circle x^2+y^2=4 which sub...

    Text Solution

    |

  4. If f(x)=x+tanx and g(x) is inverse of f(x) then g^(')(x) is equal to

    Text Solution

    |

  5. Tangents PA and PB are drawn to parabola y^(2)=4x from any arbitrary p...

    Text Solution

    |

  6. If lim(nrarroo) (n.2^(n))/(n(3x-4)^(n)+n.2^(n+1)+2^(n))=1/2 where "n" ...

    Text Solution

    |

  7. Eccentricity of ellipse 2(x-y+1)^(2)+3(x+y+2)^(2)=5 is

    Text Solution

    |

  8. If (tan^(-1)x)^(3)+(tan^(-1)y)^(3)=1-3tan^(-1)x.tan^(-1)y. Then which ...

    Text Solution

    |

  9. If f:RrarrR is a continuous function satisfying f(0)=1 and f(2x)-f(x)=...

    Text Solution

    |

  10. tan^(-1)(sinx)=sin^(-1)(tanx) holds true for

    Text Solution

    |

  11. is The function f(x)=(x^2-1)|x^2-3x+2|+cos(|x|) is differentiable not ...

    Text Solution

    |

  12. Consider parabola P(1)-=y=x^(2) and P(2)-=y^(2)=-8x and the line L-=lx...

    Text Solution

    |

  13. If the normals at (x(i),y(i)) i=1,2,3,4 to the rectangular hyperbola x...

    Text Solution

    |

  14. Let f(x)=x^(3)-x^(2)+x+1 and g(x)={("max "f(t) 0letlex 0lexle1),(3-x 1...

    Text Solution

    |

  15. The value(s) of x satisfying tan^(-1)(x+3)-tan^(-1)(x-3)=sin^(-1)(3/5)...

    Text Solution

    |

  16. For an ellipse having major and minor axis along x and y axes respecti...

    Text Solution

    |

  17. If f:[0,1]rarrR is defined as f(x)={(x^(3)(1-x)"sin"1/(x^(2)) 0ltxle1)...

    Text Solution

    |

  18. If f(x)=root (3)(8x^(3)+mx^(2))-nx such that lim(xrarroo)f(x)=1 then

    Text Solution

    |

  19. For the curve y=4x^3-2x^5,find all the points at which the tangent pa...

    Text Solution

    |

  20. Minimum value of (sin^(-1)x)^(2)+(cos^(-1)x)^(2) is greater than

    Text Solution

    |

  21. If y+a=m(1)(x+3a),y+a=m(2)(x+3a) are two tangents to the parabola y^(2...

    Text Solution

    |