Home
Class 12
MATHS
If (1+sec^(2)pi x). (1+sec^(2)y)= -x^(2)...

If `(1+sec^(2)pi x). (1+sec^(2)y)= -x^(2)+2x+3` then

A

`x= -1, y= npi, n in I`

B

`x = 0, y = n pi, n in I`

C

`x = 1, y = 2n pi, n in I`

D

`x = 1, y = n pi, n in I`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( (1 + \sec^2(\pi x))(1 + \sec^2(y)) = -x^2 + 2x + 3 \), we will follow these steps: ### Step 1: Understand the given equation The equation is given as: \[ (1 + \sec^2(\pi x))(1 + \sec^2(y)) = -x^2 + 2x + 3 \] We need to analyze both sides of the equation. ### Step 2: Simplify the right-hand side (RHS) The right-hand side can be rewritten as: \[ -x^2 + 2x + 3 = -(x^2 - 2x - 3) \] Factoring the quadratic expression: \[ x^2 - 2x - 3 = (x - 3)(x + 1) \] Thus, we have: \[ -x^2 + 2x + 3 = -((x - 3)(x + 1)) \] ### Step 3: Find the maximum value of the left-hand side (LHS) The left-hand side is: \[ 1 + \sec^2(\pi x) \text{ and } 1 + \sec^2(y) \] Since \(\sec^2(\theta) \geq 1\) for all \(\theta\), we have: \[ 1 + \sec^2(\pi x) \geq 2 \quad \text{and} \quad 1 + \sec^2(y) \geq 2 \] Thus, the minimum value of the LHS is: \[ (1 + \sec^2(\pi x))(1 + \sec^2(y)) \geq 2 \times 2 = 4 \] ### Step 4: Set LHS equal to RHS Since the minimum value of the LHS is 4, we set: \[ 4 = -x^2 + 2x + 3 \] Rearranging gives: \[ -x^2 + 2x - 1 = 0 \] Multiplying through by -1: \[ x^2 - 2x + 1 = 0 \] Factoring: \[ (x - 1)^2 = 0 \] Thus, \(x = 1\). ### Step 5: Substitute \(x = 1\) back into the LHS Substituting \(x = 1\) into the LHS: \[ 1 + \sec^2(\pi \cdot 1) = 1 + \sec^2(\pi) = 1 + 1 = 2 \] So we have: \[ (1 + \sec^2(\pi))(1 + \sec^2(y)) = 2(1 + \sec^2(y)) \] Setting this equal to 4: \[ 2(1 + \sec^2(y)) = 4 \] Dividing by 2: \[ 1 + \sec^2(y) = 2 \] Thus: \[ \sec^2(y) = 1 \implies y = n\pi \quad (n \in \mathbb{Z}) \] ### Final Solution The solutions to the equation are: \[ x = 1 \quad \text{and} \quad y = n\pi \quad (n \text{ is any integer}) \]

To solve the equation \( (1 + \sec^2(\pi x))(1 + \sec^2(y)) = -x^2 + 2x + 3 \), we will follow these steps: ### Step 1: Understand the given equation The equation is given as: \[ (1 + \sec^2(\pi x))(1 + \sec^2(y)) = -x^2 + 2x + 3 \] We need to analyze both sides of the equation. ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE|Exercise PART : 1MATHEMATICS SEC - 1|1 Videos
  • TEST PAPERS

    RESONANCE|Exercise PART : 1MATHEMATICS|9 Videos
  • TEST PAPER

    RESONANCE|Exercise CHEMISTRY|37 Videos
  • TEST SERIES

    RESONANCE|Exercise MATHEMATICS|131 Videos

Similar Questions

Explore conceptually related problems

If lim_(x rarr0)x^(2)cos(pi sec^(2)x)csc(pi sec^(2)x)=(1)/(a pi) then a is equal to

If sec^(-1)(x) +"cosec"^(-1) (1/3) = pi/2 , then find x .

sec^(3)(x^(2)+1)

For n in N, let f_(n) (x) = tan ""(x)/(2) (1+ sec x ) (1+ sec 2x) (1+ sec 4x)……(1+ sec 2 ^(n)x), the lim _(xto0) (f _(n)(x))/(2x) is equal to :

Find the particular solution of the following : sec^(2)x tan y dx - sec^(2)y tan x dy = 0 , given that y= pi/6, x= pi/3 .

lim_ (x rarr1) (sec ((pi x) / (2)) log x) =

For x, y, z, t in R, sin^(-1) x + cos^(-1) y + sec^(-1) z ge t^(2) - sqrt(2pi t) + 3pi The value of x + y + z is equal to

If y = sec^(-1) ((1)/(2x^(2) -1)) " then " (dy)/(dx) = ?

sec^(2) y tan x dy + sec^(2) x tan y dx = 0 , " when " x =y = pi/4

RESONANCE-TEST PAPERS-MATHEMATICS
  1. If (1+sec^(2)pi x). (1+sec^(2)y)= -x^(2)+2x+3 then

    Text Solution

    |

  2. The least positive integral value of 'k' for which there exists at lea...

    Text Solution

    |

  3. The locus of the midpoint of a chord of the circle x^2+y^2=4 which sub...

    Text Solution

    |

  4. If f(x)=x+tanx and g(x) is inverse of f(x) then g^(')(x) is equal to

    Text Solution

    |

  5. Tangents PA and PB are drawn to parabola y^(2)=4x from any arbitrary p...

    Text Solution

    |

  6. If lim(nrarroo) (n.2^(n))/(n(3x-4)^(n)+n.2^(n+1)+2^(n))=1/2 where "n" ...

    Text Solution

    |

  7. Eccentricity of ellipse 2(x-y+1)^(2)+3(x+y+2)^(2)=5 is

    Text Solution

    |

  8. If (tan^(-1)x)^(3)+(tan^(-1)y)^(3)=1-3tan^(-1)x.tan^(-1)y. Then which ...

    Text Solution

    |

  9. If f:RrarrR is a continuous function satisfying f(0)=1 and f(2x)-f(x)=...

    Text Solution

    |

  10. tan^(-1)(sinx)=sin^(-1)(tanx) holds true for

    Text Solution

    |

  11. is The function f(x)=(x^2-1)|x^2-3x+2|+cos(|x|) is differentiable not ...

    Text Solution

    |

  12. Consider parabola P(1)-=y=x^(2) and P(2)-=y^(2)=-8x and the line L-=lx...

    Text Solution

    |

  13. If the normals at (x(i),y(i)) i=1,2,3,4 to the rectangular hyperbola x...

    Text Solution

    |

  14. Let f(x)=x^(3)-x^(2)+x+1 and g(x)={("max "f(t) 0letlex 0lexle1),(3-x 1...

    Text Solution

    |

  15. The value(s) of x satisfying tan^(-1)(x+3)-tan^(-1)(x-3)=sin^(-1)(3/5)...

    Text Solution

    |

  16. For an ellipse having major and minor axis along x and y axes respecti...

    Text Solution

    |

  17. If f:[0,1]rarrR is defined as f(x)={(x^(3)(1-x)"sin"1/(x^(2)) 0ltxle1)...

    Text Solution

    |

  18. If f(x)=root (3)(8x^(3)+mx^(2))-nx such that lim(xrarroo)f(x)=1 then

    Text Solution

    |

  19. For the curve y=4x^3-2x^5,find all the points at which the tangent pa...

    Text Solution

    |

  20. Minimum value of (sin^(-1)x)^(2)+(cos^(-1)x)^(2) is greater than

    Text Solution

    |

  21. If y+a=m(1)(x+3a),y+a=m(2)(x+3a) are two tangents to the parabola y^(2...

    Text Solution

    |