Home
Class 12
MATHS
If x = 13 + 2sqrt(42), then sqrt(x) + (1...

If `x = 13 + 2sqrt(42)`, then `sqrt(x) + (1)/(sqrt(x))` is equal to `asqrt(b)` then find the value of `b - a` ?

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \sqrt{x} + \frac{1}{\sqrt{x}} \) where \( x = 13 + 2\sqrt{42} \). ### Step-by-Step Solution: 1. **Identify \( x \)**: \[ x = 13 + 2\sqrt{42} \] 2. **Express \( x \) in a perfect square form**: We can express \( x \) as: \[ x = (a + b)^2 \] where \( a^2 + b^2 + 2ab = 13 + 2\sqrt{42} \). 3. **Set up equations**: From the equation, we can equate: - \( 2ab = 2\sqrt{42} \) ⇒ \( ab = \sqrt{42} \) - \( a^2 + b^2 = 13 \) 4. **Use the identity \( (a + b)^2 = a^2 + b^2 + 2ab \)**: From \( ab = \sqrt{42} \), we can find \( a \) and \( b \) using: \[ a^2 + b^2 = 13 \quad \text{and} \quad ab = \sqrt{42} \] 5. **Substituting \( b = \frac{\sqrt{42}}{a} \)** into \( a^2 + b^2 = 13 \)**: \[ a^2 + \left(\frac{\sqrt{42}}{a}\right)^2 = 13 \] \[ a^2 + \frac{42}{a^2} = 13 \] Multiply through by \( a^2 \): \[ a^4 - 13a^2 + 42 = 0 \] Let \( y = a^2 \): \[ y^2 - 13y + 42 = 0 \] 6. **Solve the quadratic equation**: Using the quadratic formula \( y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ y = \frac{13 \pm \sqrt{(-13)^2 - 4 \cdot 1 \cdot 42}}{2 \cdot 1} \] \[ y = \frac{13 \pm \sqrt{169 - 168}}{2} \] \[ y = \frac{13 \pm 1}{2} \] Thus, \( y = 7 \) or \( y = 6 \). 7. **Find \( a \) and \( b \)**: If \( a^2 = 7 \) and \( b^2 = 6 \), then: \[ a = \sqrt{7}, \quad b = \sqrt{6} \quad \text{or vice versa} \] 8. **Calculate \( \sqrt{x} \)**: \[ \sqrt{x} = a + b = \sqrt{7} + \sqrt{6} \] 9. **Calculate \( \sqrt{x} + \frac{1}{\sqrt{x}} \)**: \[ \sqrt{x} + \frac{1}{\sqrt{x}} = \sqrt{7} + \sqrt{6} + \frac{1}{\sqrt{7} + \sqrt{6}} \] To simplify \( \frac{1}{\sqrt{7} + \sqrt{6}} \), we rationalize: \[ \frac{1}{\sqrt{7} + \sqrt{6}} \cdot \frac{\sqrt{7} - \sqrt{6}}{\sqrt{7} - \sqrt{6}} = \frac{\sqrt{7} - \sqrt{6}}{1} = \sqrt{7} - \sqrt{6} \] Therefore, \[ \sqrt{x} + \frac{1}{\sqrt{x}} = \sqrt{7} + \sqrt{6} + \sqrt{7} - \sqrt{6} = 2\sqrt{7} \] 10. **Identify \( a \) and \( b \)**: Here, we can see that \( \sqrt{x} + \frac{1}{\sqrt{x}} = 2\sqrt{7} \) can be expressed as \( a\sqrt{b} \) where \( a = 2 \) and \( b = 7 \). 11. **Calculate \( b - a \)**: \[ b - a = 7 - 2 = 5 \] ### Final Answer: \[ \boxed{5} \]

To solve the problem, we need to find the value of \( \sqrt{x} + \frac{1}{\sqrt{x}} \) where \( x = 13 + 2\sqrt{42} \). ### Step-by-Step Solution: 1. **Identify \( x \)**: \[ x = 13 + 2\sqrt{42} \] ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE|Exercise PART - I MATHEMATICS SEC - 1|14 Videos
  • TEST PAPERS

    RESONANCE|Exercise PART - I MATHEMATICS SEC - 2|1 Videos
  • TEST PAPERS

    RESONANCE|Exercise PART : 1MATHEMATICS|9 Videos
  • TEST PAPER

    RESONANCE|Exercise CHEMISTRY|37 Videos
  • TEST SERIES

    RESONANCE|Exercise MATHEMATICS|131 Videos

Similar Questions

Explore conceptually related problems

If x = 3 + 2 sqrt(2) , then find the value of ( sqrt(x) - (1)/(sqrt(x)) ) .

If x=5+2sqrt(6), then (x-1)/(sqrt(x)) is equal to a.sqrt(2) b.sqrt(3)c.2sqrt(2)d.2sqrt(3)

Find the value of sqrt(x)-(1)/(sqrt(x)) if x=3+2sqrt(2)

If (3sqrt(5)-6sqrt(7))-(2sqrt(5)-11sqrt(7))=asqrt(5)+bsqrt(7), then find the values of a and b.

If sqrt((1 + 27/169)) = (1 + x/13) then find the value of x.

If tan x=(b)/(a) then sqrt((a+b)/(a-b))+sqrt((a-b)/(a+b)) is equal to