Home
Class 12
MATHS
The number of all possible ordered pairs...

The number of all possible ordered pairs `(x, y), x, y in R` satisfying the system of equations `x + y = (2pi)/(3), cos x + cos y = (3)/(2)` is

Text Solution

Verified by Experts

The correct Answer is:
0

We have `cos x + cos y = (3)/(2)`
`rArr 2 cos ((x + y)/(2)) cos ((x - y)/(2)) = (3)/(2)`
`rArr 2 cos '(pi)/(3) cos ((x - y)/(2)) = (3)/(2)`
[using `x + y = (2pi)/(3)`]
`rArr cos ((x - y)/(2)) = (3)/(2)`, which is not possible
Hence, the system of equlibrium has not solution.
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE|Exercise Math|105 Videos
  • TEST PAPERS

    RESONANCE|Exercise MATHEMATICS|263 Videos
  • TEST PAPERS

    RESONANCE|Exercise PART - I MATHEMATICS SEC - 2|1 Videos
  • TEST PAPER

    RESONANCE|Exercise CHEMISTRY|37 Videos
  • TEST SERIES

    RESONANCE|Exercise MATHEMATICS|131 Videos

Similar Questions

Explore conceptually related problems

If x + y = (2pi)/(3)" and cos" x+ "cos"y = (3)/(2) , then

The solution set of the system of equations x+y=(2 pi)/(3),cos x+cos y=(3)/(2), where x and y are real,is

The number of all possible ordered pairs (x,y) where x,y in I, satisfying both the equations hat sim(x^(2)+1)(y^(2)+1)=10 and (x+y)(xy-1)=3

The number of ordered pairs (x,y) satisfying the system of equations 6^(x)((2)/(3))^(y)-3.2^(x+y)-8.3^(x-y)+24=0,xy=2 is

The number of integral ordered pair (x,y) that satisfy the system of equatin |x+y-4|=5 and |x-3| + |y-1|=5 is/are:

The number of ordered pairs (x, y) of integers satisfying x^3 + y^3 = 65 is

Number of ordered pair (s) of (x,y) satisfying the system of equations,log_(2)xy=5 and (log_((1)/(2)))(x)/(y)=1 is :

The number of ordered pairs (x,y) of real numbers that satisfy the simultaneous equations x+y^(2)=x^(2)+y=12 is

The number of ordered pair(s) (x .y) satisfying the equationssin x*cos y=1 and x^(2)+y^(2)<=9 pi^(2) is/are

Find the number of integral ordered pairs (x,y) satisfying the equation log(3x+2y)=logx+logy.

RESONANCE-TEST PAPERS-PART - I MATHMATICS
  1. Find the value of (sin30^(@).tan330^(@).sec420^(@))/(tan135^(@).sin135...

    Text Solution

    |

  2. If 2010 is a root of x^(2)(1 - pq) - x(p^(2) + q^(2)) - (1 + pq) = 0 a...

    Text Solution

    |

  3. The number of all possible ordered pairs (x, y), x, y in R satisfying ...

    Text Solution

    |

  4. The remainder when (1!)^(2) + (2!)^(2) + (3!)^(2) + ….. + (100!)^(2) i...

    Text Solution

    |

  5. Let f(n)(theta) = sum(n=0)^(n) (1)/(4^(n))sin^(4)(2^(n)theta). Then wh...

    Text Solution

    |

  6. If a, b, c are distinct positive real numbers such that the quadratic ...

    Text Solution

    |

  7. If S(n) = sum(n=1)^(n) (2n + 1)/(n^(4) + 2n^(3) + n^(2)) then S(10) is...

    Text Solution

    |

  8. If p, q, r each are positive rational number such tlaht p gt q gt r an...

    Text Solution

    |

  9. If (2tan^(2)theta(1)tan^(2)theta(2)tan^(2)theta(3)+tan^(2)theta(1)tan^...

    Text Solution

    |

  10. The expression cos^(2)(alpha + beta + gamma) + cos^(2)(beta + gamma) +...

    Text Solution

    |

  11. For all equation |x^(2) - 10x + 9| = kx

    Text Solution

    |

  12. Let a, b, c , d he real numbers such that a + b+c+d = 10, then the m...

    Text Solution

    |

  13. If sum(t=1)^(1003) (r^(2) + 1)r! = a! - b(c!) where a, b, c in N the l...

    Text Solution

    |

  14. (.^(50)C(1))^(2)+2(.^(50)C(2))^(2)+3(.^(50)C(3))^(2)+.....+50(.^(50)C(...

    Text Solution

    |

  15. If a(n) = sqrt(1+(1+(1)/(n))^(2))+sqrt(1+(1-(1)/(n))^(2)) then value o...

    Text Solution

    |

  16. Let E = [(1)/(3) + (1)/(50)]+[(1)/(3)+(2)/(50)]+[(1)/(3)+(3)/(50)]+……....

    Text Solution

    |

  17. Let r1, r2, r3 be the three (not necessarily distinct) solution to t...

    Text Solution

    |

  18. If (1)/(sin20^(@)) + (1)/(sqrt(3)cos20^(@)) = 2kcos40^(@), then 18k^(4...

    Text Solution

    |

  19. In which of the folloing m gt n(m, n in R) ?

    Text Solution

    |

  20. The continued product 2.6.10.4…..(n times) in equal to

    Text Solution

    |