Home
Class 12
MATHS
If alpha and beta be the roots of equati...

If `alpha` and `beta` be the roots of equation `x^(2) + 3x + 1 = 0` then the value of `((alpha)/(1 + beta))^(2) + ((beta)/(1 + alpha))^(2)` is equal to

A

`15`

B

`18`

C

`21`

D

`17`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression \[ \left(\frac{\alpha}{1 + \beta}\right)^2 + \left(\frac{\beta}{1 + \alpha}\right)^2 \] given that \(\alpha\) and \(\beta\) are the roots of the equation \[ x^2 + 3x + 1 = 0. \] ### Step 1: Find the roots \(\alpha\) and \(\beta\) Using the quadratic formula, the roots of the equation \(ax^2 + bx + c = 0\) are given by: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] For our equation \(x^2 + 3x + 1 = 0\), we have \(a = 1\), \(b = 3\), and \(c = 1\). Calculating the discriminant: \[ b^2 - 4ac = 3^2 - 4 \cdot 1 \cdot 1 = 9 - 4 = 5. \] Now, substituting into the quadratic formula: \[ x = \frac{-3 \pm \sqrt{5}}{2}. \] Thus, the roots are: \[ \alpha = \frac{-3 + \sqrt{5}}{2}, \quad \beta = \frac{-3 - \sqrt{5}}{2}. \] ### Step 2: Calculate \(1 + \beta\) and \(1 + \alpha\) Calculating \(1 + \beta\): \[ 1 + \beta = 1 + \frac{-3 - \sqrt{5}}{2} = \frac{2 - 3 - \sqrt{5}}{2} = \frac{-1 - \sqrt{5}}{2}. \] Calculating \(1 + \alpha\): \[ 1 + \alpha = 1 + \frac{-3 + \sqrt{5}}{2} = \frac{2 - 3 + \sqrt{5}}{2} = \frac{-1 + \sqrt{5}}{2}. \] ### Step 3: Substitute into the expression Now we substitute these values into our expression: \[ \left(\frac{\alpha}{1 + \beta}\right)^2 + \left(\frac{\beta}{1 + \alpha}\right)^2 = \left(\frac{\frac{-3 + \sqrt{5}}{2}}{\frac{-1 - \sqrt{5}}{2}}\right)^2 + \left(\frac{\frac{-3 - \sqrt{5}}{2}}{\frac{-1 + \sqrt{5}}{2}}\right)^2. \] This simplifies to: \[ \left(\frac{-3 + \sqrt{5}}{-1 - \sqrt{5}}\right)^2 + \left(\frac{-3 - \sqrt{5}}{-1 + \sqrt{5}}\right)^2. \] ### Step 4: Simplify each term Calculating the first term: \[ \frac{-3 + \sqrt{5}}{-1 - \sqrt{5}} = \frac{(-3 + \sqrt{5})(-1 + \sqrt{5})}{(-1 - \sqrt{5})(-1 + \sqrt{5})} = \frac{(3 - 3\sqrt{5} + \sqrt{5} - 5)}{1 - 5} = \frac{-2 - 2\sqrt{5}}{-4} = \frac{1 + \sqrt{5}}{2}. \] Thus, \[ \left(\frac{-3 + \sqrt{5}}{-1 - \sqrt{5}}\right)^2 = \left(\frac{1 + \sqrt{5}}{2}\right)^2 = \frac{(1 + \sqrt{5})^2}{4} = \frac{1 + 2\sqrt{5} + 5}{4} = \frac{6 + 2\sqrt{5}}{4} = \frac{3 + \sqrt{5}}{2}. \] Calculating the second term similarly gives: \[ \left(\frac{-3 - \sqrt{5}}{-1 + \sqrt{5}}\right)^2 = \left(\frac{1 - \sqrt{5}}{2}\right)^2 = \frac{(1 - \sqrt{5})^2}{4} = \frac{1 - 2\sqrt{5} + 5}{4} = \frac{6 - 2\sqrt{5}}{4} = \frac{3 - \sqrt{5}}{2}. \] ### Step 5: Combine the results Now we combine both results: \[ \frac{3 + \sqrt{5}}{2} + \frac{3 - \sqrt{5}}{2} = \frac{(3 + \sqrt{5}) + (3 - \sqrt{5})}{2} = \frac{6}{2} = 3. \] ### Final Answer Thus, the value of \[ \left(\frac{\alpha}{1 + \beta}\right)^2 + \left(\frac{\beta}{1 + \alpha}\right)^2 \] is \[ \boxed{3}. \]

To solve the problem, we need to find the value of the expression \[ \left(\frac{\alpha}{1 + \beta}\right)^2 + \left(\frac{\beta}{1 + \alpha}\right)^2 \] given that \(\alpha\) and \(\beta\) are the roots of the equation ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE|Exercise PART : 1MATHEMATICS SEC - 1|1 Videos
  • TEST PAPERS

    RESONANCE|Exercise PART : 1MATHEMATICS|9 Videos
  • TEST PAPER

    RESONANCE|Exercise CHEMISTRY|37 Videos
  • TEST SERIES

    RESONANCE|Exercise MATHEMATICS|131 Videos

Similar Questions

Explore conceptually related problems

If alpha and beta be the roots of the equation x^(2)+3x+1=0 then the value of ((alpha)/(1+beta))^(2)+((beta)/(alpha+1))^(2)

If alpha and beta are the roots of the equation, 7x^2 -3x -2 = 0 , then the value of (alpha )/(1 - alpha^2) + (beta)/(1 + beta^2) is equal to :

If alpha, beta are the roots of equation 3x^(2)-4x+2=0 , then the value of (alpha)/(beta)+(beta)/(alpha) is

If alpha and beta are the roots of the quadratic equation x^(2)-6x+1=0, then the value of (alpha^(2))/(beta^(2))+(beta^(2))/(alpha^(2)) is

If alpha and beta are the roots of equation 6x^(2)+x-2=0 , find the value of (alpha)/(beta)+(beta)/(alpha) :

If alpha and beta are the roots of equation 2x^(2)-3x+5=0 then find the value of alpha^(2)beta+beta^(2)alpha

If alpha,beta are the roots of the equation 8x^(2)-3x+27=0, then the value of ((alpha^(2))/(beta))^((1)/(3))+((beta^(2))/(alpha))^((1)/(3)) is

RESONANCE-TEST PAPERS-MATHEMATICS
  1. If alpha and beta be the roots of equation x^(2) + 3x + 1 = 0 then the...

    Text Solution

    |

  2. The least positive integral value of 'k' for which there exists at lea...

    Text Solution

    |

  3. The locus of the midpoint of a chord of the circle x^2+y^2=4 which sub...

    Text Solution

    |

  4. If f(x)=x+tanx and g(x) is inverse of f(x) then g^(')(x) is equal to

    Text Solution

    |

  5. Tangents PA and PB are drawn to parabola y^(2)=4x from any arbitrary p...

    Text Solution

    |

  6. If lim(nrarroo) (n.2^(n))/(n(3x-4)^(n)+n.2^(n+1)+2^(n))=1/2 where "n" ...

    Text Solution

    |

  7. Eccentricity of ellipse 2(x-y+1)^(2)+3(x+y+2)^(2)=5 is

    Text Solution

    |

  8. If (tan^(-1)x)^(3)+(tan^(-1)y)^(3)=1-3tan^(-1)x.tan^(-1)y. Then which ...

    Text Solution

    |

  9. If f:RrarrR is a continuous function satisfying f(0)=1 and f(2x)-f(x)=...

    Text Solution

    |

  10. tan^(-1)(sinx)=sin^(-1)(tanx) holds true for

    Text Solution

    |

  11. is The function f(x)=(x^2-1)|x^2-3x+2|+cos(|x|) is differentiable not ...

    Text Solution

    |

  12. Consider parabola P(1)-=y=x^(2) and P(2)-=y^(2)=-8x and the line L-=lx...

    Text Solution

    |

  13. If the normals at (x(i),y(i)) i=1,2,3,4 to the rectangular hyperbola x...

    Text Solution

    |

  14. Let f(x)=x^(3)-x^(2)+x+1 and g(x)={("max "f(t) 0letlex 0lexle1),(3-x 1...

    Text Solution

    |

  15. The value(s) of x satisfying tan^(-1)(x+3)-tan^(-1)(x-3)=sin^(-1)(3/5)...

    Text Solution

    |

  16. For an ellipse having major and minor axis along x and y axes respecti...

    Text Solution

    |

  17. If f:[0,1]rarrR is defined as f(x)={(x^(3)(1-x)"sin"1/(x^(2)) 0ltxle1)...

    Text Solution

    |

  18. If f(x)=root (3)(8x^(3)+mx^(2))-nx such that lim(xrarroo)f(x)=1 then

    Text Solution

    |

  19. For the curve y=4x^3-2x^5,find all the points at which the tangent pa...

    Text Solution

    |

  20. Minimum value of (sin^(-1)x)^(2)+(cos^(-1)x)^(2) is greater than

    Text Solution

    |

  21. If y+a=m(1)(x+3a),y+a=m(2)(x+3a) are two tangents to the parabola y^(2...

    Text Solution

    |