Home
Class 12
MATHS
If x^(2) + 9y^(2) = 1, then minimum and...

If `x^(2) + 9y^(2) = 1`, then minimum and maximum value of `3x^(2) - 27y^(2) + 24xy` respectively

A

`0, 5`

B

`-7, 7`

C

`-5, 10`

D

`0, 10`

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum and maximum values of the expression \( z = 3x^2 - 27y^2 + 24xy \) under the constraint \( x^2 + 9y^2 = 1 \), we can follow these steps: ### Step 1: Substitute Variables We start with the constraint \( x^2 + 9y^2 = 1 \). We can express \( x \) and \( y \) in terms of a parameter \( \theta \): - Let \( x = \cos \theta \) - Then, substituting into the constraint gives us: \[ \cos^2 \theta + 9y^2 = 1 \implies 9y^2 = 1 - \cos^2 \theta = \sin^2 \theta \] - Therefore, we have: \[ y^2 = \frac{1}{9} \sin^2 \theta \implies y = \frac{1}{3} \sin \theta \] ### Step 2: Substitute into the Expression Now substitute \( x \) and \( y \) into the expression \( z \): \[ z = 3(\cos^2 \theta) - 27\left(\frac{1}{3} \sin \theta\right)^2 + 24\left(\cos \theta\right)\left(\frac{1}{3} \sin \theta\right) \] This simplifies to: \[ z = 3\cos^2 \theta - 27 \cdot \frac{1}{9} \sin^2 \theta + 8 \sin \theta \cos \theta \] \[ = 3\cos^2 \theta - 3\sin^2 \theta + 8\sin \theta \cos \theta \] ### Step 3: Use Trigonometric Identities Using the identities: - \( \cos^2 \theta - \sin^2 \theta = \cos 2\theta \) - \( 2\sin \theta \cos \theta = \sin 2\theta \) We can rewrite \( z \): \[ z = 3\cos 2\theta + 4\sin 2\theta \] ### Step 4: Find Maximum and Minimum Values The expression \( z = 3\cos 2\theta + 4\sin 2\theta \) can be analyzed using the amplitude formula: - The maximum value of \( A\cos x + B\sin x \) is given by \( \sqrt{A^2 + B^2} \). - Here, \( A = 3 \) and \( B = 4 \): \[ \text{Maximum value} = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5 \] - The minimum value is the negative of the maximum value: \[ \text{Minimum value} = -5 \] ### Final Result Thus, the minimum and maximum values of \( z \) are: - Minimum value: \(-5\) - Maximum value: \(5\)

To find the minimum and maximum values of the expression \( z = 3x^2 - 27y^2 + 24xy \) under the constraint \( x^2 + 9y^2 = 1 \), we can follow these steps: ### Step 1: Substitute Variables We start with the constraint \( x^2 + 9y^2 = 1 \). We can express \( x \) and \( y \) in terms of a parameter \( \theta \): - Let \( x = \cos \theta \) - Then, substituting into the constraint gives us: \[ \cos^2 \theta + 9y^2 = 1 \implies 9y^2 = 1 - \cos^2 \theta = \sin^2 \theta ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE|Exercise PART : 1MATHEMATICS SEC - 1|1 Videos
  • TEST PAPERS

    RESONANCE|Exercise PART : 1MATHEMATICS|9 Videos
  • TEST PAPER

    RESONANCE|Exercise CHEMISTRY|37 Videos
  • TEST SERIES

    RESONANCE|Exercise MATHEMATICS|131 Videos

Similar Questions

Explore conceptually related problems

If xy=1 , then minimum value of x ^(2) + y^(2) is :

Find the minimum and maximum values of y in 4x^(2)+12xy+10y^(2)-4y+3=0

If 4x^(2)+y^(2)=1 then the maximum value of 12x^(2)-3y^(2)+16xy is

If 2x+y=5 then the maximum value of x^(2)+3xy+y^(2) is

If x^(2)+y^(2)=4 then sum of maximum and minimum values of 3x+4y is equal to

If x,y in R and x^(2)+y^(2)+xy=1, then find the minimum value of x^(3)y+xy^(3)+4

If 9+2(3x-xy+x^(2))+y^(2)=0 ,then what is the value of (3x^(2)-2xy+5y^(2)) ?

Find the minimum and maximum value of f(x,y)=7x^(2)+4xy+3y^(2) subjected to x^(2) +y^(2) =1

If x – 2y = 4, the minimum value of xy is

RESONANCE-TEST PAPERS-MATHEMATICS
  1. If x^(2) + 9y^(2) = 1, then minimum and maximum value of 3x^(2) - 27y...

    Text Solution

    |

  2. The least positive integral value of 'k' for which there exists at lea...

    Text Solution

    |

  3. The locus of the midpoint of a chord of the circle x^2+y^2=4 which sub...

    Text Solution

    |

  4. If f(x)=x+tanx and g(x) is inverse of f(x) then g^(')(x) is equal to

    Text Solution

    |

  5. Tangents PA and PB are drawn to parabola y^(2)=4x from any arbitrary p...

    Text Solution

    |

  6. If lim(nrarroo) (n.2^(n))/(n(3x-4)^(n)+n.2^(n+1)+2^(n))=1/2 where "n" ...

    Text Solution

    |

  7. Eccentricity of ellipse 2(x-y+1)^(2)+3(x+y+2)^(2)=5 is

    Text Solution

    |

  8. If (tan^(-1)x)^(3)+(tan^(-1)y)^(3)=1-3tan^(-1)x.tan^(-1)y. Then which ...

    Text Solution

    |

  9. If f:RrarrR is a continuous function satisfying f(0)=1 and f(2x)-f(x)=...

    Text Solution

    |

  10. tan^(-1)(sinx)=sin^(-1)(tanx) holds true for

    Text Solution

    |

  11. is The function f(x)=(x^2-1)|x^2-3x+2|+cos(|x|) is differentiable not ...

    Text Solution

    |

  12. Consider parabola P(1)-=y=x^(2) and P(2)-=y^(2)=-8x and the line L-=lx...

    Text Solution

    |

  13. If the normals at (x(i),y(i)) i=1,2,3,4 to the rectangular hyperbola x...

    Text Solution

    |

  14. Let f(x)=x^(3)-x^(2)+x+1 and g(x)={("max "f(t) 0letlex 0lexle1),(3-x 1...

    Text Solution

    |

  15. The value(s) of x satisfying tan^(-1)(x+3)-tan^(-1)(x-3)=sin^(-1)(3/5)...

    Text Solution

    |

  16. For an ellipse having major and minor axis along x and y axes respecti...

    Text Solution

    |

  17. If f:[0,1]rarrR is defined as f(x)={(x^(3)(1-x)"sin"1/(x^(2)) 0ltxle1)...

    Text Solution

    |

  18. If f(x)=root (3)(8x^(3)+mx^(2))-nx such that lim(xrarroo)f(x)=1 then

    Text Solution

    |

  19. For the curve y=4x^3-2x^5,find all the points at which the tangent pa...

    Text Solution

    |

  20. Minimum value of (sin^(-1)x)^(2)+(cos^(-1)x)^(2) is greater than

    Text Solution

    |

  21. If y+a=m(1)(x+3a),y+a=m(2)(x+3a) are two tangents to the parabola y^(2...

    Text Solution

    |