Home
Class 12
MATHS
16 players P(1),P(2),P(3),….P(16) take p...

16 players `P_(1),P_(2),P_(3),….P_(16)` take part in a tennis tournament. Lower suffix player is better than any higher suffix player. These players are to be divided into 4 groups each comprising of 4 players and the best from each group is selected to semifinals.
Q. Number of ways in which they can be divided into 4 equal groups if the players `P_(1),P_(2),P_(3)` and `P_(4)` are in different groups, is:

A

`((11)!)/(216)`

B

`((12)!)/((3!)^(4))`

C

`((12)!)/((3!)^(4)(4!))`

D

`((11)!)/((3!)^(4))`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE|Exercise PART : 1MATHEMATICS SEC - 1|1 Videos
  • TEST PAPERS

    RESONANCE|Exercise PART : 1MATHEMATICS|9 Videos
  • TEST PAPER

    RESONANCE|Exercise CHEMISTRY|37 Videos
  • TEST SERIES

    RESONANCE|Exercise MATHEMATICS|131 Videos

Similar Questions

Explore conceptually related problems

16 players P_1,P_2,P_3,.. P_16 take part in a tennis tounament. Lower suffix player is better han any higher suffix player. These players are to be divided into 4 groups each comprising of 4 players and the best from each group is selected for semifinals .Number ways in which 16 players can be divided into four equal groups , is

16 players P_(1),P_(2),P_(3),….P_(16) take part in a tennis tournament. Lower suffix player is better than any higher suffix player. These players are to be divided into 4 groups each comprising of 4 players and the best from each group is selected to semifinals. Q. Number of ways in which these 16 players can be divided into four equal groups, such that when the best player is selected from each group P_(6) in one among them is (k)(12!)/((4!)^(3)) the value of k is

The number of ways in which p+q things can be divided into two groups containing p and q things respectively is

To find the number of ways in which m+n+p things can be divided into three groups containing m,n,p things severally.

Sixteen players S_(1) , S_(2) , S_(3) ,…, S_(16) play in a tournament. Number of ways in which they can be grouped into eight pairs so that S_(1) and S_(2) are in different groups, is equal to

52 cards are to be distributed among 4 players such that 2 players get 12 cards each and other 2 players get 14 cards each,then the number of ways in which this can be done is

Sixteen players P_(1),P_(2),P_(3)….., P_(16) play in tournament. If they grouped into eight pair then the probability that P_(4) and P_(9) are in different groups, is equal to

Eight players P_(1),P_(2),P_(3),............P_(8), play a knock out tourrament.It is known that whenever the players P_(i) and P_(j), play,the player P_(i) will win if i

RESONANCE-TEST PAPERS-MATHEMATICS
  1. 16 players P(1),P(2),P(3),….P(16) take part in a tennis tournament. Lo...

    Text Solution

    |

  2. The least positive integral value of 'k' for which there exists at lea...

    Text Solution

    |

  3. The locus of the midpoint of a chord of the circle x^2+y^2=4 which sub...

    Text Solution

    |

  4. If f(x)=x+tanx and g(x) is inverse of f(x) then g^(')(x) is equal to

    Text Solution

    |

  5. Tangents PA and PB are drawn to parabola y^(2)=4x from any arbitrary p...

    Text Solution

    |

  6. If lim(nrarroo) (n.2^(n))/(n(3x-4)^(n)+n.2^(n+1)+2^(n))=1/2 where "n" ...

    Text Solution

    |

  7. Eccentricity of ellipse 2(x-y+1)^(2)+3(x+y+2)^(2)=5 is

    Text Solution

    |

  8. If (tan^(-1)x)^(3)+(tan^(-1)y)^(3)=1-3tan^(-1)x.tan^(-1)y. Then which ...

    Text Solution

    |

  9. If f:RrarrR is a continuous function satisfying f(0)=1 and f(2x)-f(x)=...

    Text Solution

    |

  10. tan^(-1)(sinx)=sin^(-1)(tanx) holds true for

    Text Solution

    |

  11. is The function f(x)=(x^2-1)|x^2-3x+2|+cos(|x|) is differentiable not ...

    Text Solution

    |

  12. Consider parabola P(1)-=y=x^(2) and P(2)-=y^(2)=-8x and the line L-=lx...

    Text Solution

    |

  13. If the normals at (x(i),y(i)) i=1,2,3,4 to the rectangular hyperbola x...

    Text Solution

    |

  14. Let f(x)=x^(3)-x^(2)+x+1 and g(x)={("max "f(t) 0letlex 0lexle1),(3-x 1...

    Text Solution

    |

  15. The value(s) of x satisfying tan^(-1)(x+3)-tan^(-1)(x-3)=sin^(-1)(3/5)...

    Text Solution

    |

  16. For an ellipse having major and minor axis along x and y axes respecti...

    Text Solution

    |

  17. If f:[0,1]rarrR is defined as f(x)={(x^(3)(1-x)"sin"1/(x^(2)) 0ltxle1)...

    Text Solution

    |

  18. If f(x)=root (3)(8x^(3)+mx^(2))-nx such that lim(xrarroo)f(x)=1 then

    Text Solution

    |

  19. For the curve y=4x^3-2x^5,find all the points at which the tangent pa...

    Text Solution

    |

  20. Minimum value of (sin^(-1)x)^(2)+(cos^(-1)x)^(2) is greater than

    Text Solution

    |

  21. If y+a=m(1)(x+3a),y+a=m(2)(x+3a) are two tangents to the parabola y^(2...

    Text Solution

    |