Home
Class 12
MATHS
d/(dx)(x^(4x^(3)))=...

`d/(dx)(x^(4x^(3)))`=

A

`x^(12x^(2))`

B

`4x^(4x^(3)+2).(1+3 log x)`

C

`4x^(3). Log x`

D

`4x^(3)(1+ 3 log x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the differentiation problem \( \frac{d}{dx} (x^{4x^3}) \), we will follow these steps: ### Step 1: Rewrite the Function Let \( y = x^{4x^3} \). ### Step 2: Take the Natural Logarithm Taking the natural logarithm of both sides: \[ \ln y = \ln (x^{4x^3}) = 4x^3 \ln x \] ### Step 3: Differentiate Both Sides Now, differentiate both sides with respect to \( x \): \[ \frac{1}{y} \frac{dy}{dx} = \frac{d}{dx} (4x^3 \ln x) \] ### Step 4: Apply the Product Rule Using the product rule on the right side: \[ \frac{d}{dx} (4x^3 \ln x) = 4x^3 \cdot \frac{d}{dx}(\ln x) + \ln x \cdot \frac{d}{dx}(4x^3) \] \[ = 4x^3 \cdot \frac{1}{x} + \ln x \cdot (12x^2) \] \[ = 4x^2 + 12x^2 \ln x \] ### Step 5: Substitute Back Now substitute back into the equation: \[ \frac{1}{y} \frac{dy}{dx} = 4x^2 + 12x^2 \ln x \] ### Step 6: Multiply Both Sides by \( y \) Now, multiply both sides by \( y \): \[ \frac{dy}{dx} = y (4x^2 + 12x^2 \ln x) \] ### Step 7: Substitute \( y \) Back Substituting \( y = x^{4x^3} \): \[ \frac{dy}{dx} = x^{4x^3} (4x^2 + 12x^2 \ln x) \] ### Final Answer Thus, the derivative is: \[ \frac{d}{dx} (x^{4x^3}) = x^{4x^3} (4x^2 + 12x^2 \ln x) \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise DERIVATIVE OF PARAMETRIC FUNCTIONS|18 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise HIGHER ORDER DERIVATIVES|32 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise DERIVATIVE OF INVERSE FUNCTIONS|27 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos

Similar Questions

Explore conceptually related problems

(d)/(dx)(x^((1)/(3)))=

Differentiation of Infinite long expression || d/dx(x^(x^(x..)))

(d)/(dx)sin(x^(x))

(d)/(dx)(a^(x)+x^(a))=?

(d)/(dx)(x^(x))=?

(d)/(dx)(x^((1)/(x)))

If (d)/(dx)f(x) = 4x^(3) - (3)/(x^(4)) such that f(2) = 0 . Then f(x) is

If (d)/(dx)[f(x)]=(1)/(1+x^(2))," then: "(d)/(dx)[f(x^(3))]=

(d)/(dx)(3^(3^x))=

(d)/(dx)(3x^(2)+2x)=