Home
Class 12
MATHS
If x= a sin 2theta (1+ cos 2theta), y= b...

If `x= a sin 2theta (1+ cos 2theta)`, `y= b cos 2theta(1- cos 2theta)`, then `(dy)/(dx)`=

A

`(b tan theta)/a`

B

`(a tan theta)/b`

C

`a/(b tan theta)`

D

`b/(a tan theta)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) given the equations \(x = a \sin(2\theta)(1 + \cos(2\theta))\) and \(y = b \cos(2\theta)(1 - \cos(2\theta))\), we will use the chain rule and implicit differentiation. ### Step-by-step Solution: 1. **Differentiate \(x\) with respect to \(\theta\)**: \[ x = a \sin(2\theta)(1 + \cos(2\theta)) \] We will apply the product rule here. Let \(u = \sin(2\theta)\) and \(v = 1 + \cos(2\theta)\). Then, \[ \frac{dx}{d\theta} = a \left( \frac{du}{d\theta} v + u \frac{dv}{d\theta} \right) \] where: \[ \frac{du}{d\theta} = 2\cos(2\theta) \] and \[ \frac{dv}{d\theta} = -2\sin(2\theta) \] Thus, \[ \frac{dx}{d\theta} = a \left( 2\cos(2\theta)(1 + \cos(2\theta)) + \sin(2\theta)(-2\sin(2\theta)) \right) \] Simplifying this gives: \[ \frac{dx}{d\theta} = a \left( 2\cos(2\theta)(1 + \cos(2\theta)) - 2\sin^2(2\theta) \right) \] 2. **Differentiate \(y\) with respect to \(\theta\)**: \[ y = b \cos(2\theta)(1 - \cos(2\theta)) \] Again using the product rule: \[ \frac{dy}{d\theta} = b \left( \frac{du}{d\theta} v + u \frac{dv}{d\theta} \right) \] where \(u = \cos(2\theta)\) and \(v = 1 - \cos(2\theta)\). Thus, \[ \frac{du}{d\theta} = -2\sin(2\theta) \] and \[ \frac{dv}{d\theta} = 2\sin(2\theta) \] Therefore, \[ \frac{dy}{d\theta} = b \left( -2\sin(2\theta)(1 - \cos(2\theta)) + \cos(2\theta)(2\sin(2\theta)) \right) \] Simplifying gives: \[ \frac{dy}{d\theta} = b \left( -2\sin(2\theta)(1 - \cos(2\theta)) + 2\sin(2\theta)\cos(2\theta) \right) \] 3. **Finding \(\frac{dy}{dx}\)**: Using the chain rule: \[ \frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} \] 4. **Substituting the derivatives**: Substitute \(\frac{dy}{d\theta}\) and \(\frac{dx}{d\theta}\) into the equation: \[ \frac{dy}{dx} = \frac{b \left( -2\sin(2\theta)(1 - \cos(2\theta)) + 2\sin(2\theta)\cos(2\theta) \right)}{a \left( 2\cos(2\theta)(1 + \cos(2\theta)) - 2\sin^2(2\theta) \right)} \] 5. **Simplifying the expression**: We can factor out common terms to simplify further, but the final expression will depend on the specific values of \(a\) and \(b\). ### Final Result: \[ \frac{dy}{dx} = \frac{b}{a} \tan(\theta) \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise DERIVATIVE OF PARAMETRIC FUNCTIONS|18 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise HIGHER ORDER DERIVATIVES|32 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise DERIVATIVE OF INVERSE FUNCTIONS|27 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos

Similar Questions

Explore conceptually related problems

x=a sin2 theta(1+cos2 theta), y=b cos2 theta(1-cos2 theta) then (dy)/(dx)=

If x=a sin2 theta(1+cos2 theta) and y=b cos2 theta(1-cos2 theta), then prove that (dy)/(dx)=(b)/(a)tan theta

If =a sin2 theta(1+cos2 theta),y=b cos2 theta(1-os2 theta)x=a sin2 theta(1+cos2 theta),y=b cos2 theta(1-os2 theta) and (dy)/(dx)=k tan theta then the value of k is

If x = sin theta - cos theta and y = sin theta + cos theta , then (dy)/(dx) =

If x=2 cos theta- cos 2 theta and y=2 sin theta - sin 2 theta, then (dy)/(dx) =

If x = r cos theta, y = r sin theta, r =a(1+cos theta) then find (dy)/(dx)

If x=-a(theta-sin theta),y=a(1-cos theta), then (dy)/(dx) is

TARGET PUBLICATION-DIFFERENTIATION -LOGARITHMIC DIFFERENTIATION
  1. If cos(x+y) = y sinx, then (dy)/(dx)

    Text Solution

    |

  2. If sin (x+y) +cos (x+y) =1,then (dy)/(dx)=

    Text Solution

    |

  3. If sin(x+y)=log(x+y) then (dy)/(dx)=

    Text Solution

    |

  4. If 3sin(x y)+4cos(x y)=5,t h e n(dy)/(dx)= -y/x (b) (3sin(x y)+4c...

    Text Solution

    |

  5. If x=ysqrt(1-y^(2)), then (dy)/(dx)=

    Text Solution

    |

  6. If xsqrt(1 + y) + ysqrt(1 + x) = 0 x != y prove that (dy)/(dx) = (-1)/...

    Text Solution

    |

  7. If y=sqrt(logx+sqrt(logx+sqrt(logx+oo))),t h e n(dy)/(dx)i s x/(2y-1)...

    Text Solution

    |

  8. If y=sqrt(sinx+y) , then (dy)/(dx) equals (cosx)/(2y-1) (b) (cosx)/(1-...

    Text Solution

    |

  9. If y=sqrt(cosx+sqrt(cosx+sqrt(cosx+......oo, then prove that (dy)/(dx)...

    Text Solution

    |

  10. If y=e^(x+e^(x+e^(x+..."to"oo)))," then: "(dy)/(dx)=

    Text Solution

    |

  11. If y=sqrt(x+sqrt(y+sqrt(x+sqrt(y+...oo)))), then (dy)/(dx) is equal to

    Text Solution

    |

  12. If y = x^(x ^(x^(x ^(x.... oo) then prove that x dy/dx = y^2/(1- y lo...

    Text Solution

    |

  13. The derivative of a^(sec x ) " w.r.t."a^(tan x ) (a gt 0) is

    Text Solution

    |

  14. Differentiate x=e^(theta)(theta+(1)/(theta)),y = e^(-theta)(theta-( 1)...

    Text Solution

    |

  15. x=a(cos t + log tan t/2), y =a sin t

    Text Solution

    |

  16. If x= a sin 2theta (1+ cos 2theta), y= b cos 2theta(1- cos 2theta), th...

    Text Solution

    |

  17. If x=t log t ,y =t^(t) ,then (dy)/(dx)=

    Text Solution

    |

  18. Differentiate tan^(-1)((2x)/(1-x^2)) with respect to sin^(-1)((2x)/(1+...

    Text Solution

    |

  19. The derivative of sin^(-1)((2x)/(1+x^2)) w.r.t. cos^(-1)((1-x^2)/(1+x^...

    Text Solution

    |

  20. The derivative of cos^(-1)((1-x^2)/(1+x^2)) w.r.t. cot^(-1)((1-3x^2)/(...

    Text Solution

    |