Home
Class 12
MATHS
Evaluate the definite integralsint0^1 (...

Evaluate the definite integrals`int_0^1 (dx)/(1 +x^2)`

A

`pi/4`

B

`pi/2`

C

`pi/3`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the definite integral \[ \int_0^1 \frac{dx}{1+x^2}, \] we can follow these steps: ### Step 1: Identify the Integral We need to integrate the function \( \frac{1}{1+x^2} \) from 0 to 1. ### Step 2: Recall the Formula for Integration The integral of the function \( \frac{1}{a^2 + x^2} \) is given by: \[ \int \frac{dx}{a^2 + x^2} = \frac{1}{a} \tan^{-1}\left(\frac{x}{a}\right) + C. \] In our case, \( a = 1 \), so we have: \[ \int \frac{dx}{1+x^2} = \tan^{-1}(x) + C. \] ### Step 3: Apply the Limits of Integration Now we will evaluate the definite integral from 0 to 1: \[ \int_0^1 \frac{dx}{1+x^2} = \left[ \tan^{-1}(x) \right]_0^1. \] ### Step 4: Calculate the Values at the Limits Now we substitute the upper and lower limits into the antiderivative: 1. For the upper limit \( x = 1 \): \[ \tan^{-1}(1) = \frac{\pi}{4}. \] 2. For the lower limit \( x = 0 \): \[ \tan^{-1}(0) = 0. \] ### Step 5: Subtract the Values Now we subtract the value at the lower limit from the value at the upper limit: \[ \int_0^1 \frac{dx}{1+x^2} = \tan^{-1}(1) - \tan^{-1}(0) = \frac{\pi}{4} - 0 = \frac{\pi}{4}. \] ### Final Answer Thus, the value of the definite integral is \[ \frac{\pi}{4}. \] ---

To evaluate the definite integral \[ \int_0^1 \frac{dx}{1+x^2}, \] we can follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NCERT|Exercise EXERCISE 7.6|24 Videos
  • INTEGRALS

    NCERT|Exercise EXERCISE 7.10|10 Videos
  • INTEGRALS

    NCERT|Exercise EXERCISE 7.4|25 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT|Exercise EXERCISE 9.1|12 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT|Exercise MISCELLANEOUS EXERCISE|17 Videos

Similar Questions

Explore conceptually related problems

Evaluate the definite integrals int_(2)^(3)(dx)/(x^(2)-1)

Evaluate the definite integrals int_(0)^(1)(2x+3)/(5x^(2)+1)dx

Evaluate the definite integrals int_(0)^(1)(dx)/(sqrt(1-x^(2)))

Evaluate the definite integrals int_(-1)^(1)(x+1)dx

Evaluate the definite integrals int_(0)^(1)(dx)/(sqrt(1+x)-sqrt(x))

Evaluate the definite integrals int_(2)^(3)(1)/(x)dx

Evaluate the definite integrals int_(0)^(1)xe^(x^(3))dx

Evaluate the definite integrals int_(0)^((pi)/(2))sin2x tan^(-1)(sin x)dx

Evaluate the definite integrals int_(0)^(1)(xe^(x)+(sin(pi x))/(4))dx

Evaluate the definite integrals int_(0)^((pi)/(4))(tan x)dx