Home
Class 12
MATHS
Evaluate the definite integralsint0^(pi...

Evaluate the definite integrals`int_0^(pi/2)cos^2xdx`

Text Solution

AI Generated Solution

To evaluate the definite integral \( \int_0^{\frac{\pi}{2}} \cos^2 x \, dx \), we can follow these steps: ### Step 1: Use the identity for \( \cos^2 x \) We know the trigonometric identity: \[ \cos^2 x = \frac{1 + \cos 2x}{2} \] Using this identity, we can rewrite the integral: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRALS

    NCERT|Exercise EXERCISE 7.6|24 Videos
  • INTEGRALS

    NCERT|Exercise EXERCISE 7.10|10 Videos
  • INTEGRALS

    NCERT|Exercise EXERCISE 7.4|25 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT|Exercise EXERCISE 9.1|12 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT|Exercise MISCELLANEOUS EXERCISE|17 Videos

Similar Questions

Explore conceptually related problems

int_0^(pi/2) cos^5xdx

Evaluate the definite integrals int_(0)^((pi)/(2))cos2xdx

Evaluate the definite integrals int_(0)^((pi)/(2))(cos^(2)xdx)/(cos^(2)x+4sin^(2)x)

Evaluate the definite integrals int_(0)^((pi)/(4))sin2xdx

Evaluate the definite integrals int_(0)^( pi)((sin^(2)x)/(2)-(cos^(2)x)/(2))dx

"int_0^pi cos^(2)xdx

int_(0)^( pi/2)cos^(6)xdx

int_(0)^( pi/2)cos^(3)xdx

Evaluate the definite integrals int_(0)^((pi)/(4))(sin x cos x)/(cos^(4)x+sin^(2)x)dx

Evaluate the following definite integrals: int_0^(pi//2)xsinx sin2x dx