Home
Class 12
MATHS
Evaluate the definite integralsint0^pi(...

Evaluate the definite integrals`int_0^pi(sin^2(x/2)-cos^2(x/2))dx`

Text Solution

AI Generated Solution

To evaluate the definite integral \( \int_0^\pi \left( \sin^2\left(\frac{x}{2}\right) - \cos^2\left(\frac{x}{2}\right) \right) dx \), we can follow these steps: ### Step 1: Substitute \( x = 2t \) We start by making the substitution \( x = 2t \). This implies that \( dx = 2dt \). The limits of integration change as follows: - When \( x = 0 \), \( t = 0 \). - When \( x = \pi \), \( t = \frac{\pi}{2} \). Thus, the integral becomes: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRALS

    NCERT|Exercise EXERCISE 7.6|24 Videos
  • INTEGRALS

    NCERT|Exercise EXERCISE 7.10|10 Videos
  • INTEGRALS

    NCERT|Exercise EXERCISE 7.4|25 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT|Exercise EXERCISE 9.1|12 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT|Exercise MISCELLANEOUS EXERCISE|17 Videos

Similar Questions

Explore conceptually related problems

Evaluate the definite integrals int_(0)^((pi)/(2))cos^(2)xdx

Evaluate the definite integrals int_(0)^((pi)/(2))cos2xdx

Evaluate the definite integrals int_(0)^((pi)/(2))(cos^(2)xdx)/(cos^(2)x+4sin^(2)x)

The value of the definite integral int_(0)^( pi)((1-x sin2x)e^(cos^(2)x)+(1+x sin2x)e^(sin^(2)x)) dx is equal to

Evaluate the following definite integral: int_(0)^( pi)((sin^(2)x)/(2)-(cos^(2)x)/(2))dx

Evaluate the definite integrals int_(0)^((pi)/(4))(sin x cos x)/(cos^(4)x+sin^(2)x)dx

Evaluate the definite integrals int_(0)^((pi)/(4))(sin x+cos x)/(9+16sin2x)dx

Evaluate the following definite integrals: int_0^(pi//4)(sinx+cosx)/(5+4sin2x)dx

Find the value of the following: int_0^pi (sin^2(x/2)-cos^2(x/2))dx

Find the Definite Integrals : int_0^(pi/2) sin^2x cos^3x dx