Home
Class 12
MATHS
If f (x) = int(0) ^(x) (cos ^(4) t + sin...

If `f (x) = int_(0) ^(x) (cos ^(4) t + sin^(4) t ) dt, f (x + pi) ` will be equal to

A

`f (x) + f (pi)`

B

` f (x) + 2 f(pi)`

C

` f (x) + f ((pi)/(2))`

D

` f (x) + 2f ((pi)/(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( f(x + \pi) \) given that \( f(x) = \int_0^x (\cos^4 t + \sin^4 t) \, dt \). ### Step-by-Step Solution: 1. **Understanding the Function**: We have: \[ f(x) = \int_0^x (\cos^4 t + \sin^4 t) \, dt \] We need to evaluate \( f(x + \pi) \). 2. **Substituting into the Function**: We can express \( f(x + \pi) \) as: \[ f(x + \pi) = \int_0^{x + \pi} (\cos^4 t + \sin^4 t) \, dt \] 3. **Breaking the Integral**: We can break the integral into two parts: \[ f(x + \pi) = \int_0^{\pi} (\cos^4 t + \sin^4 t) \, dt + \int_{\pi}^{x + \pi} (\cos^4 t + \sin^4 t) \, dt \] The first integral is \( f(\pi) \): \[ f(x + \pi) = f(\pi) + \int_{\pi}^{x + \pi} (\cos^4 t + \sin^4 t) \, dt \] 4. **Changing Variables in the Second Integral**: For the second integral, we can make a substitution. Let \( u = t - \pi \), then \( dt = du \) and when \( t = \pi \), \( u = 0 \) and when \( t = x + \pi \), \( u = x \): \[ \int_{\pi}^{x + \pi} (\cos^4 t + \sin^4 t) \, dt = \int_0^{x} (\cos^4 (u + \pi) + \sin^4 (u + \pi)) \, du \] 5. **Using Trigonometric Identities**: Using the identities: \[ \cos(u + \pi) = -\cos u \quad \text{and} \quad \sin(u + \pi) = -\sin u \] We have: \[ \cos^4(u + \pi) = (-\cos u)^4 = \cos^4 u \quad \text{and} \quad \sin^4(u + \pi) = (-\sin u)^4 = \sin^4 u \] Thus: \[ \int_{\pi}^{x + \pi} (\cos^4 t + \sin^4 t) \, dt = \int_0^{x} (\cos^4 u + \sin^4 u) \, du = f(x) \] 6. **Combining Results**: Now we can combine our results: \[ f(x + \pi) = f(\pi) + f(x) \] ### Conclusion: Thus, the final result is: \[ f(x + \pi) = f(x) + f(\pi) \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    MOTION|Exercise EXERCISE -3|55 Videos
  • DEFINITE INTEGRATION

    MOTION|Exercise EXERCISE -4 LEVEL-I|15 Videos
  • DEFINITE INTEGRATION

    MOTION|Exercise EXERCISE -2 (LEVEL-I)|97 Videos
  • CONTINUITY

    MOTION|Exercise EXERCISE - 4 (LEVEL -II) (PREVIOUS YEAR JEE ADVANCED)|5 Videos
  • DETERMINANTS

    MOTION|Exercise EXERCISE-4 (LEVEL-II)|6 Videos

Similar Questions

Explore conceptually related problems

If f(x)=int_(0)^(x)(sin^(4)t+cos^(4)t)dt, then f(x+pi) will be equal to

If f(x) = int_(0)^(x)(2cos^(2)3t+3sin^(2)3t)dt , f(x+pi) is equal to :

If f(x) = int_(0)^(x)t sin t dt , then f'(x) is

If g(x)=int_(0)^(x)cos^(4) t dt , then (x+pi) equals

If f(x) =int_(0)^(x) sin^(4)t dt , then f(x+2pi) is equal to

If g(x)=int_(0)^(x)cos^(4)t dt, then g(x+pi) equals

Ifg(x)= int_(0)^(x) cos ^(4)t dt, "then " g (x+pi) equals